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ABSTRACT 
 

 Currently, the applicability of computer modeling to whole-cell and multi-cell 

biochemical models is limited by the accuracy and efficiency of the simulation tools used 

to model gene regulatory networks.  It is widely accepted that exact stochastic simulation 

algorithms, originally developed by Gillespie and improved by Gibson and Bruck, 

accurately depict the time-evolution of a spatially homogeneous biochemical model, but 

these algorithms are often abandoned by modelers because their execution time can be on 

the order of days to months.  Other modeling techniques exist that simulate models much 

more quickly, such as approximate stochastic simulation and differential equations 

modeling, but these techniques can be inaccurate for biochemical models with small 

populations of chemical species.  This work analyzes the performance of exact stochastic 

simulation algorithms by developing software implementations of exact stochastic 

simulation algorithms and measuring their performance for a wide variety of models.  

Through this study, several techniques are developed and tested that improve the 

performance of certain algorithms for specific models.  A new algorithm called the 

Adaptive Method is then presented which attempts to select the optimal simulation 

algorithm for the particular model based on periodic measurements of simulator 

performance during execution.  Other algorithmic changes are proposed to aid in the 

development of hardware accelerators for exact stochastic simulation.  The work serves 

as another step in the process of making exact stochastic simulation a practical modeling 

solution for molecular biologists.  



www.manaraa.com

 v

TABLE OF CONTENTS 

Chapter Page 

1. INTRODUCTION 1 

2. GENE REGULATORY NETWORKS 4 

 2.1. What are cells? 4 

 2.2. What are proteins? 5 

 2.3. How do cells use proteins? 7 

 2.4. How do cells produce proteins? 10 

 2.5. What are gene regulatory networks? 12 

 2.6. Example 13 

 2.7. Why model gene regulatory networks? 16 

 2.8. Conclusion 18 

3. MODELING GENE REGULATORY NETWORKS 19 

 3.1. Molecular Dynamics Simulation 19 

 3.2. Ordinary Differential Equations Modeling 20 

 3.3. Gillespie’s First Reaction Method 23 

 3.4. Gillespie’s Direct Method 26 

 3.5. The Dependency Graph 28 

 3.6. Gibson and Bruck’s Next Reaction Method 29 

 3.7. Gibson and Bruck’s Efficient Direct Method 33 

 3.8. Other Techniques 35 

 3.9. Conclusion 35 

4. ANALYZING EXACT STOCHASTIC SIMULATION 37 



www.manaraa.com

 vi

 4.1. Creating a Model Set 37 

 4.2. The First Reaction Method 40 

 4.3. The Direct Method 42 

 4.4. The Efficient Direct Method 46 

 4.5. The Next Reaction Method 46 

 4.6. Conclusion 50 

5. THE ADAPTIVE METHOD 53  

 5.1. Next vs. DirectDG2 53 

 5.2. The Adaptive Method 57 

 5.3. Performance Analysis 62 

 5.4. Implications 67 

 5.5. Applying the Adaptive Method to Real Models 67 

 5.6. Conclusion 68 

6. FAST PROPENSITY CALCULATION 71 

 6.1. Propensity Calculation 71 

 6.2. Fast Propensity Calculation 73 

 6.3. Implementation Details 77 

 6.4. Performance Analysis 78 

 6.5. Implications 81 

 6.6. Conclusion 81 

7. CONCLUSIONS AND FUTURE WORK 82 

REFERENCES 85 

APPENDICES 88 



www.manaraa.com

 vii

 A. Simulator Source Code 89 

 B. Performance Analysis Source Code 136 

 C. Test Models 139 

VITA  148 



www.manaraa.com

 viii

 LIST OF FIGURES 

Figure  Page 

2-1.  Chemical Structure of an Amino Acid 6 

2-2.  Chemical Structure of Alanine 8 

2-3.  Chemical Structure of Tyrosine 8 

2-4.  Chemical Structure of a Protein 9 

2-5.  Chemical Structure of DNA 11 

2-6.  Quorum Sensing in Vibrio fischeri 15 

3-1.  Sample Biochemical Network 21 

3-2.  Gillespie’s First Reaction Method 24 

3-3.  Gillespie’s Direct Method 27 

3-4.  Example Adjacency Matrix 30 

3-5.  Gibson and Bruck’s Next Reaction Method 31 

3-5.  Gibson and Bruck’s Efficient Direct Method 34 

4-1.  First Execution Times 41 

4-2.  First vs. FirstDG (Update Factor = 8) 43 

4-3.  Direct Execution Times 43 

4-4.  Direct vs. First and FirstDG (Update Factor = 2) 44 

4-5.  Direct vs. First and FirstDG (Update Factor = 8) 44 

4-6.  DirectDG vs. Direct (Update Factor = 8) 45 

4-7.  DirectDG2 vs. DirectDG (Update Factor = 8) 47 

4-8.  EfficientDirect Execution Times 47 

4-9.  EfficientDirect vs. DirectDG2 (Update Factor = 2) 48 



www.manaraa.com

 ix

4-10.  EfficientDirect vs. DirectDG2 (Update Factor = 8) 48 

4-11.  Next Execution Times 49 

4-12.  Next vs. EfficientDirect (Update Factor = 2) 51 

4-13.  Next vs. EfficientDirect (Update Factor = 8) 51 

4-14.  Next vs. DirectDG2 (Update Factor = 2) 52 

4-15.  Next vs. DirectDG2 (Update Factor = 8) 52 

5-1.  Next vs. DirectDG2 (Update Factor = 2) 54 

5-2.  Next vs. DirectDG2 (Update Factor = 4) 54 

5-3.  Next vs. DirectDG2 (Update Factor = 6) 55 

5-4.  Next vs. DirectDG2 (Update Factor = 8) 55 

5-5.  Intersection of Execution Time Curves for DirectDG2 vs. Next 56 

5-6.  Summary of the Adaptive Method 58 

5-7.  The Adaptive Method 59 

5-8.  Adaptive Method vs. DirectDG2 and Next (Update Factor = 2) 63 

5-9.  Adaptive Method vs. DirectDG2 and Next (Update Factor = 4) 63 

5-10.  Adaptive Method vs. DirectDG2 and Next (Update Factor = 6) 64 

5-11.  Adaptive Method vs. DirectDG2 and Next (Update Factor = 8) 64 

5-12.  Windows - Adaptive Method vs. DirectDG2 and Next (UF = 2) 65 

5-13.  Windows - Adaptive Method vs. DirectDG2 and Next (UF = 4) 65 

5-14.  Windows - Adaptive Method vs. DirectDG2 and Next (UF = 6) 66 

5-15.  Windows - Adaptive Method vs. DirectDG2 and Next (UF = 8) 66 

5-16.  Real Model Execution Times 69 

6-1.  Execution Times for Next and NextFPC (Update Factor = 6) 79 



www.manaraa.com

 x

6-2.  Execution Times for DirectDG2 and DirectFPC (UF = 6) 79 

6-3.  Speedup for DirectDG2 vs DirectFPC (Update Factor = 6) 80 

6-4.  Speedup for NextFPC vs. Next (Update Factor = 6) 80 

 



www.manaraa.com

 1 

Chapter 1 

Introduction 

 Computer modeling has forever changed the field of integrated circuit design.  

Every analog and digital circuit designed today is first built on a virtual workbench, 

where a schematic diagram or textual description of the circuit is captured in a software 

tool and the time evolution of the circuit’s output based on varying stimuli is estimated 

using a program such as SPICE (Simulation Program with Integrated Circuit Emphasis) 

[1].  Modeling allows the engineer to sweep parameters quickly, optimize the design, 

analyze tradeoffs, and verify that the design meets specifications.  Without these tools, it 

would be impossible to design circuits that meet today’s size, complexity, and 

performance requirements. 

 A similar revolution may soon take place in the field of molecular biology.  New 

biochemical analysis techniques like the use of micro-arrays have led to an explosion in 

the amount of data biologists can gather about the internal state of a cell [2].  Using this 

information, biologists can begin to analyze and understand gene regulatory networks, 

the complex interactions between proteins and genes that control cell functions.  If 

accurate computer models of these gene regulatory networks could be developed, 

biologists could begin working in a virtual laboratory, and thus save time and money. 

 Unfortunately, several roadblocks prevent the development of gene regulatory 

network models.  One of the most fundamental problems is the tradeoff between 

efficiency and accuracy in gene regulatory network simulation algorithms.  Some 

modelers have used boolean networks, Bayesian statistics, and differential equations to 
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model gene regulatory networks [3].  These techniques have fast simulation times (less 

than a day for biologically relevant problems), but can produce inadequate or inaccurate 

results because they fail to accurately model the noise of a biochemical process and they 

are not accurate for models with small species populations.  Others modelers have used 

molecular dynamics models and exact stochastic simulation, which are believed to 

accurately predict the time-evolution of a biochemical system and properly model noise, 

but can have execution times on the order of months and years for single whole-cell 

models [4].   

  In an attempt to improve the performance of gene regulatory network simulation, 

this work focuses on analyzing and improving the performance of exact stochastic 

simulation algorithms, specifically the First Reaction Method and Direct Method 

developed by Gillespie [5] and the Next Reaction Method developed by Gibson and 

Bruck [6].  Through this analysis, techniques are discovered that improve the 

performance of these various algorithms for a specific set of models.  An algorithm is 

then developed called the Adaptive Method that combines these enhancements and 

attempts to select the optimal algorithm for simulating the particular model by monitoring 

the performance of the simulator as the simulation progresses. 

 Additionally, a technique called Fast Propensity Calculation is suggested for 

reducing several of the multiplication steps involved in exact stochastic simulation to 

addition steps.  After analyzing the performance of this technique in a software 

implementation of the algorithm, no significant performance gain is shown, but this work 

does have implications for creating efficient hardware accelerators for exact stochastic 

simulation. 
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 The second chapter of this work is intended to provide the reader with a basic 

introduction to molecular biology and gene regulatory networks.  Chapter three 

introduces existing techniques for modeling gene regulatory networks, focusing in detail 

on the exact stochastic simulation algorithms developed by Gillespie.  The fourth chapter 

discusses the results of performing rigorous analysis on exact stochastic simulation 

algorithms by running a large set of input models.  The fifth chapter introduces and 

analyzes the Adaptive Method, a new algorithm that matches or outperforms existing 

stochastic simulation algorithms.  The final chapter introduces and analyses the 

performance of Fast Propensity Calculation.   

 As a whole, this work provides several new insights into exact stochastic 

simulation of gene regulatory networks and will hopefully serve as another step in the 

development of a virtual laboratory for molecular biologists.  
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Chapter 2 

Gene Regulatory Networks 

 The goal of this chapter is to provide the reader with a basic understanding of 

gene regulatory networks and their importance to the life of a cell.  To sufficiently 

introduce this topic, we must first discuss several concepts fundamental to molecular 

biology and genetics, such as: 

 - What are cells? 

 - What are proteins? 

 - How do cells use proteins? 

 - How do cells produce proteins? 

After these topics are introduced, a detailed definition of gene regulatory networks is 

provided along with several illustrative examples.  By gaining an appreciation for the 

importance of gene regulatory networks, we can then begin to discuss the importance of 

modeling them accurately.  For a more detailed introduction to gene regulatory networks 

and molecular biology, readers are encouraged to consult [7,8,9]. 

 

2.1  What are cells? 

 Cells are the basic building blocks of life.  Microorganisms like bacteria, fungi, 

protozoa, and algae are comprised of a single cell functioning as an individual entity.  

Multicellular organisms like plants and animals are comprised of millions of cells 

working together for the common good of the organism. 
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The simplest organisms, called prokaryotes, consist of a single cell containing one 

strand of deoxyribonucleic acid (DNA) and a cell wall or membrane that separates the 

organism from its environment.  Through this membrane, the cell constantly interacts 

with its environment, absorbing nutrients and discarding waste products.  DNA is a chain 

of nucleic acids that contains instructions that control the behavior and reproduction of 

the cell.  DNA will be discussed in more detail later in this chapter.  

Organisms with more complex cellular structure are called eukaryotes.  

Eukaryotes have a cell wall or membrane, one or multiple strands of DNA, and individual 

structures called organelles that perform specific cell functions.  Examples of cell 

organelles include nuclei which isolate the DNA from the rest of the cell, mitochondria 

which are used for energy generation, and chloroplasts which are used in photosynthesis 

(the conversion of light energy into chemical energy). 

 Yeast and algae are examples of single-celled eukaryotes, while bacteria are 

single-celled prokaryotes.  Multi-cellular organisms like plants and animals are 

comprised of the more complex eukaryotic cells. 

 

2.2  What are proteins? 

 To define the term protein, we must first discuss amino acids, the molecules that 

chain together to form proteins.  Amino acids are a group of molecules that are 

characterized by a central carbon atom (C) connected to a hydrogen atom (H), an amino 

group (NH2), a carboxyl group (COOH), and a side chain which differs for each amino 

acid.  Figure 2-1 shows the chemical structure of an amino acid, where R represents the  
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Figure 2-1.  Chemical Structure of an Amino Acid. 
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side chain.  The side chain of an amino acid can range in complexity.  Alanine, shown in 

figure 2-2, has a simple side chain consisting of a methyl group (CH3).  Tryosine, shown 

in figure 2-3, has a more complex side chain, including a phenolic ring. 

Proteins are chains of amino acids bonded together by peptide bonds.  In a peptide 

bond, one hydrogen (H) from the amino group (NH2) of an amino acid “A” bonds with 

the hydroxyl group (OH) from the carboxyl group (COOH) of another amino acid “B” to 

form water (H20).  The NH- ion from amino acid A and the CO+ ion from amino acid B 

bond to join the amino acids together.  A chain of these amino acids are shown in Figure 

2-4. 

 Typically, when amino acids have bonded together to form proteins, they are 

referred to as residues.  Proteins can consist of as few as 100 residues or as many as 

5,000. 

  

2.3  How do cells use proteins? 

 Many critical biological processes, such as food digestion, movement, and cell 

reproduction, depend on chemical reactions that would naturally occur too slowly to be 

useful for sustaining life.  For life to be possible, cells must accelerate these reactions by 

providing catalysts, chemicals that increase the speed of reactions.  In cells, proteins 

called enzymes serve as the catalysts for many of these important biochemical reactions.  

In addition to catalytic function, proteins provide regulatory function and are building 

blocks in large multi-protein machines such as flagella (used in cell movement), 

ribosomes, and ribonucleic acid polymerase (RNAP), which are used in the production of 

proteins.  
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Figure 2-2.  Chemical Structure of Alanine [7]. 

 

 

 

 

 

Figure 2-3.  Chemical Structure of Tyrosine [7]. 
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Figure 2-4.  Chemical Structure of a Protein [7]. 
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 Because proteins are such large molecules, sections of the protein can bond to 

other sections of the same protein creating a more complex shape.  This attribute 

individualizes proteins limiting the protein to serve as a catalyst for only specific 

biochemical reactions.  Cells take advantage of this attribute and use it to trigger the 

specific biochemical reactions that the cell needs to execute for a specific situation.  

 

2.4  How do cells produce proteins? 

 To begin a discussion of protein synthesis, the biochemical process by which 

proteins are produced, we return to a term introduced earlier, DNA.  DNA is a chain of 

smaller molecules called nucleic acids.  There are four nucleic acids in DNA: Adenine 

(A), Thymine (T), Guanine (G), and Cytosine (C).  Nucleic acids are connected together 

by a “backbone” consisting of deoxyribose (a sugar) and phosphate.  A simplified picture 

of the chemical structure of DNA is shown in figure 2-5, where P represents the 

phosphate group, D represents deoxyribose, and A, T, G, and C represent nucleic acids.  

In cells, DNA is double stranded, where complimentary nucleic acids are bonded 

together; adenine always bonds to thymine and guanine always bonds to cytosine.  

 During protein synthesis, DNA serves as a recipe or program for creating a 

specific protein.  A series of three consecutive nucleic acids (i.e. GCC, CAT, TTA) on a 

DNA strand is called a codon.  One codon, called the transcription start site, represents 

the location on the DNA where instructions for producing the protein start and another 

codon, called the stop codon, represents the location on the DNA where the instructions 

end.  The codons between the transcription start site and the stop codon contain a set of 
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Figure 2-5.  Chemical Structure of DNA 
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codons which code for each amino acid that makes up the protein, for instance AAG or 

Adenine-Adenine-Guanine code for the amino acid Valine.  The entire section of DNA 

that codes for a complete protein is called a gene.  On a single strand of DNA, there can 

exist hundreds or even thousands of genes. 

 Protein synthesis is a multi-step process.  First, in a process called transcription, a 

complimentary copy of the genetic code from the DNA is created and stored in a 

molecule called messenger ribonucleic acid (mRNA).  mRNA is composed of the same 

nucleic acids as DNA, except that Uracil substitutes for Thymine.  Transcription is 

carried out by a multi-protein complex called ribonucleic acid polymerase (RNAP) which 

sequentially attaches the nucleic acids to the growing mRNA chain.  Then, in a process 

called translation, molecules called "ribosomes" bond to the promoter site on the mRNA, 

move down the mRNA strand decoding the genetic instructions, and build the protein 

molecules with the help of another molecule called transfer ribonucleic acid (tRNA).  

When the ribosome reaches the stop codon, it detaches from the mRNA and protein 

synthesis is complete.   

 

2.5  What are gene regulatory networks? 

 Now that we understand that process by which proteins are produced, we can 

discuss gene regulatory networks, the complex interdependence between genes that 

allows cells to regulate the production of proteins.   

Not all genes on the DNA strand can be transcribed into mRNA at all times.  

Some genes are inducible, meaning they require the presence of an inducer protein that 

increases the rate of gene transcription.  Other genes are repressible, meaning that a 
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repressor protein can bond to the DNA at the promoter site and prevent RNAP from 

binding and beginning the transcription process.  By limiting the amount of mRNA that is 

produced, the amount of protein that can be produced is also limited.  The cell can 

therefore use inducers or repressors to control what and when biochemical reactions are 

executed.  When combinations of these complex interdependencies between inducible 

and repressible genes perform a specific cellular function, the system is called a gene 

regulatory network. 

 

2.6  Example 

To more easily understand the concept of gene regulatory networks, we will 

examine a naturally occurring example, bacterial quorum sensing in Vibrio fischeri.  

Vibrio fischeri is a species of bacteria that can live as free-living organisms, but are often 

found in a symbiotic relationship with some marine fish and squid [10].  When Vibrio 

fischeri cell density is high and the bacteria is contained within the light organ of a host 

organism, the bacteria produces enzymes which trigger reactions that cause the bacteria 

to luminesce (emit light).  When in low concentration or in a free-living state, the bacteria 

are non-luminescent [10].   

The ability for cells to change their behavior based on changes in cell density 

(number of cells per unit volume) is called “quorum sensing” [11].  Because Vibrio 

fischeri use quorum sensing to regulate luminescence, their quorum sensing can be easily 

measured by light detectors, thus making them an ideal candidate for studying quorum 

sensing.   
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The study of quorum sensing is important because many other bacteria which 

cause infections also take advantage of this cellular process.  For example, Pseudomonas 

aeruginosa is a bacteria that can contaminate surgical wounds, abscesses, burns, ear 

infections, and the lungs [8].  Patients who have received prolonged treatment with 

immunosuppressive agents, antibiotics, and radiation are particularly susceptible to 

infection by Pseudomonas aeruginosa [8].  In Pseudomonas aeruginosa, quorum sensing 

is used to regulate the production of toxins, allowing colonies of the bacteria to grow to 

sufficient size undetected by the immune system of the host [11].  Because several 

species of bacteria use quorum sensing to regulate toxin production, studying this cell 

behavior is highly applicable to pharmaceutical research.  

A diagram of the quorum sensing gene regulatory network in Vibrio fischeri is 

given in figure 2-6. 

The DNA strand that controls quorum sensing contains two genes, luxR and luxI.  

The set of genes luxCDABEG produce enzymes that cause bioluminescence to occur.   

Each gene is transcribed to produce mRNA at a basal rate (a nominal rate of production) 

and each mRNA then produces corresponding proteins LuxR, LuxI, and a set of proteins, 

which are labeled LuxCDABEG.  At the basal rate of transcription, insufficient 

LuxCDABEG proteins are produced to generate light.  The LuxI protein binds with 

substrates, additional molecules that bind to enzymes, to form N-3-oxo-hexanoyl-L-

homoserine lactone (OHHL).  OHHL then bonds with the LuxR protein to form a 

complex, which when bound to the lux box on the DNA, induces production of more 

luxR, luxI, and luxCDABEG mRNA.  By inducing this protein production, a large  
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Figure 2-6.  Quorum Sensing in Vibrio fischeri. 
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enough concentration of LuxCDABEG is created to trigger other reactions that cause bio-

luminescence to occur. 

 The OHHL protein is referred to as an auto-inducer.  This molecule passes freely 

in and out of the cell membrane.  When cell density is low, the cell produces these 

proteins at a low rate and the likelihood of the OHHL/LuxR complex bonding to the 

DNA to induce production of the various genes is very low, therefore bio-luminescence 

does not occur.  When cell density is high, all of the cells produce enough auto-inducer 

within the environment to cause a greater concentration of the auto-inducer to be present 

in the cell.  This greatly increases the likelihood of the LuxR/OHHL complex binding to 

the DNA and inducing protein production, which then triggers bio-luminescence. 

 This example illustrates a very simple gene regulatory network that allows 

the cell to detect high cell density.  The gene regulatory network acts as a switch, creating 

two steady states: one which produces light and another which does not.  Almost all cell 

functions are controlled by similar gene regulatory networks; however, many cell 

functions can be much more complex and contain multiple interactions between genes, 

inducing and repressing multiple genes. 

 

2.7  Why model gene regulatory networks? 

 By understanding how cells operate and communicate, we can begin to develop 

methods to interrupt and control cellular processes.  Understanding cells at a level of 

detail that is exposed by modeling could lead to a revolution in the development of new 

medicines, allowing biologists to develop treatments for illnesses ranging from HIV to 

cancer. 
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 Already, biologists and modelers have had some success using gene regulatory 

network modeling to understand cellular behavior in new ways.  In 1998, John Tyson and 

his coworkers developed mathematical models for cell mitosis (the process that controls 

cell-division) in frog eggs [12,13].  The model predicted details of the protein interaction 

involved in this process that had not yet been discovered.  In 2003, these predictions were 

confirmed in a laboratory [14]. 

 Adam Arkin and his coworkers have used exact stochastic simulation, the same 

type of simulation analyzed throughout this work, to help show that stochastic variation 

(or noise) can participate in pathway selection in gene regulatory networks by analyzing 

and developing models of phage λ-infected Escherichia coli cells [15].  Cox et al. later 

used similar techniques to gain insight on the importance of noise in the quorum sensing 

gene regulatory network in Vibrio fischeri [16]. 

 Drew Endy has also developed models of the phage T7 virus in Escherichia Coli 

[17].  His model “accounts for entry of T7 genome into its host, expression of T7 genes, 

replication of T7 DNA, assembly of T7 procapsids, and packaging of T7 DNA to finally 

produce intact T7 progeny” and matches experimental observations made on this virus 

for the past 30 years [17].  He argues this model is a “useful tool for exploring and 

understanding the dynamics of cell-growth” and claims that biological simulation can be 

used to [17]: 

1.  Find mismatches between the published mechanisms and data. 

2.  Test multiple treatment strategies before attempting them in a lab. 

 3.  Provide insights from nature for the design of nanoscale biological tools. 
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2.8  Conclusion 

Gene regulatory networks are complex interactions between different 

biochemicals that control cellular functions.  By modeling these gene regulatory 

networks, we hope to develop innovative techniques for suppressing or eliminating some 

of the world’s most deadly illnesses.  The long term goal of this research is to give 

biologists a software platform where they can conduct experiments quickly and 

inexpensively in a virtual laboratory.   

 



www.manaraa.com

 19

Chapter 3 

Modeling Gene Regulatory Networks 

  Now that we have introduced the concept of a gene regulatory network and 

explained the importance of developing gene regulatory network models, we can begin to 

discuss the algorithms used to simulate gene regulatory network models.  This chapter 

will cover several techniques including molecular dynamics simulation, ordinary 

differential equations modeling and exact stochastic simulation.  This discussion will 

create a foundation for our analysis of the performance of these techniques provided in 

the next chapter. 

 

3.1 Molecular Dynamics Simulation 

To simulate gene regulatory network models, we need an algorithm that can 

determine the time evolution of reacting chemical species within a volume.  One possible 

approach is to use a classical molecular dynamics simulation.  For more information on 

this topic, consult [18,19].  In its simplest form, each molecule is treated as a sphere and 

the simulator tracks each molecule’s three-dimensional position and velocity.  During 

each iteration of the algorithm, the kinetic and potential energies of each molecule are 

determined and the molecule’s velocity and position are adjusted.  When two molecules 

collide, the algorithm assesses if a reaction has occurred and changes the structure of the 

system accordingly.  More complex versions of these simulation algorithms account for 

the structure of each molecule, the rotation of the molecule, the rotation of each of the 
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atoms that compose a molecule, and other details regarding the quantum mechanics of the 

system.   

Although this technique is very accurate, this solution is similar to the classic N-

Body problem in computer science and is computationally complex.  Even for just a few 

molecules, this solution requires too much simulation time to be an effective modeling 

technique for a biochemical system.  This technique also captures unnecessary detail 

about the chemical system.  Although some biologists have attempted to model 

individual proteins using molecular dynamics, see “protein folding” in [9], most 

biologists modeling gene regulatory networks tend to only be concerned with the genes 

that are being expressed/regulated and the overall concentrations of chemical species, not 

the exact position of each molecule. 

 

3.2  Ordinary Differential Equations Modeling 

Another approach to modeling gene regulatory networks is to treat the system as  

spatially homogeneous, where the position of each individual molecule is irrelevant.  For 

this technique to be accurate, the chemical system must be well-stirred, meaning that the 

molecules in the mixture are constantly colliding with each other and that the probability 

of two molecules colliding can be determined by the concentration of the various species 

in the mixture.   

Using a differential equations modeling approach, we convert the concentration of 

each chemical species to a single-valued continuous function with respect to time [5].  To 

illustrate this idea, suppose we wished to model the biochemical network given in figure 

3-1. 
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Figure 3-1.  Sample Biochemical Network 
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 Here we see a system that includes DNA, which produces mRNA at a rate K1.  

mRNA can decay at a rate K6 and can produce Protein at a rate K2.  Protein can 

decay at a rate of K5 and can dimerize at a rate K3.  The reverse dimerization reaction 

can occur at a rate K4.  To use a differential equations model, these reactions would be 

converted into the following set of ordinary differential equations. 

 

 0=
dt

dDNA  

DimerkPk
dt

dDimer

DimerkPkPkMRNAk
dt
dP

MRNAkDNAk
dt

dMRNA

4

2

3

4

2

352

61

−=

+−−=

−=

 

 

 Using standard stiff differential equation solvers, like those provided in Matlab, 

we can simulate biologically relevant problems in less than a day, but not necessarily 

accurately.  Ordinary differential equations models ignore the inherent random 

fluctuations of the systems, which is their major limitation when applied to systems with 

small numbers of molecules.  Special care must be taken when selecting the time-step to 

ensure that the differential equations model does not allow the concentrations of the 

chemical species to fall below zero, which makes no physical sense in a chemical system.  

Models with low concentration can yield results where species concentrations can contain 

real values, i.e. 1.5 molecules of mRNA, when the actual system can only contain integer 
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values of molecules.  This inaccuracy is often present when modeling gene regulatory 

networks because the population of certain chemical species can be very small, but can 

have a large effect on the time-evolution of the system 

  

3.3  Gillespie’s First Reaction Method 

Another approach that resolves this accuracy problem was proposed by Daniel T. 

Gillespie in the mid 1970s.  His algorithm, called the First Reaction Method, treats the 

systems as a stochastic process with discrete variables that represent the populations, not 

concentrations, of chemical species [5,6].  This algorithm is given in figure 3-2. 

To understand this algorithm fully, we must first define the term propensity used 

in step 5.  Consider the following chemical reaction: 

 

 CBA →+       (1) 

 

The probability that the reaction given in equation 1 occurs, or the probability that a 

given molecule A  reacts with a given molecule B , in a small time dt  is  

 

 )(11 dtodtaP +=      (2) 

 

As dt  approaches zero, the propensity term 1a  dominates equation 2.  The propensity 

may be a function of volume, temperature, concentration, etc.  In step 4 of the First 

Reaction Method we calculate the propensity of the reaction based on the stochastic rate  
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1. Initialize a list of n  chemical species and their  
 initial numbers of molecules nXXX ,...,, 21 . 
2. Initialize a list of m  chemical reactions and their  
 associated stochastic rate constants mkkk ,...,, 21 . 
3. Initialize the current time 0←t . 
4. Calculate the propensity, maaa ,...,, 21 , for each of the m   
 chemical reactions. 
5. For each reaction i , generate a putative time iτ ,  
 according to an exponential distribution with  
 parameter ia . 
6. Let µ  be the reaction whose putative time, µτ  is least. 
7. Change the number of molecules nXXX ,...,, 21 , to reflect the  
 execution of reaction µ .   
8. Set µτ+← tt . 
9. Go to Step 4. 
 

Figure 3-2: Gillespie’s First Reaction Method. 
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constant associated with the reaction 1k  and the current populations of the reactants AX  

and BX , using the following equation: 

 

 11 kXXa BA ⋅⋅=      (3) 

 

Multiplying AX  and BX  together in equation 3 reflects the number of combinations by 

which the reaction could occur, thus making the propensity depend on the concentrations 

of the chemical reactants.  The input rate constant 1k  is used to account for all other 

factors (volume, temperature, etc.) that may determine the propensity of the reaction. 

Step 5 of the algorithm uses the propensity generated in step 4 to generate a 

putative time or the amount of time it will take for this reaction to occur based on the 

current state of the system.  This is accomplished by generating a uniformly distributed 

random number between 0 and 1 (URN), scaling it to fit the exponential distribution, and 

multiplying that number by the propensity, as shown in the equation below. 

  

 )log(1 URN
ai

i −=τ      (4) 

 

Step 6 selects the reaction with the smallest putative time using a linear search.  

Step 7 updates the number of molecules based on the stoichiometry of the reaction.  For 

example, if we were executing the reaction given in equation 1, we would decrement the 
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values AX  and BX  and increment the value of CX .  Step 8 updates the current time 

based on the putative time selected in Step 6. 

 

3.4 Gillespie’s Direct Method 

Gillespie’s First Reaction Method accurately simulates chemicals reacting in a 

spatially homogeneous mixture, but is inefficient.  Gillespie realized that for each 

iteration of the algorithm M exponentially distributed random numbers must be 

generated.  This calculation is time-consuming because it involves calculating the natural 

log function which is computationally intense.  To reduce this costly computation, 

Gillespie developed the Direct Method, which sums the individual reaction propensities 

to create a system propensity.  A single scaled exponential random number is then 

generated from the system propensity which represents the time elapsed between reaction 

events for the entire system.  A scaled uniform random number is then generated to 

determine which reaction occurred during the time period.  By collapsing the reaction 

propensities, this technique requires only two random numbers to be generated per 

iteration of the algorithm regardless of problem size.  This algorithm is given in figure 3-

3. 

Steps 5 and 6 of the First Reaction Method determine how much time elapses in 

the system and which reaction to execute by generating putative times for each reaction 

and selecting the reaction whose putative time is least.  Gillespie’s Direct Method 

replaces steps 5 and 6 of the First Reaction Method with steps 5, 6, and 7, by summing 

the propensities and determining when the next reaction event should occur for the entire  



www.manaraa.com

 27

1. Initialize a list of n  chemical species and their  
 initial numbers of molecules nXXX ,...,, 21 . 
2. Initialize a list of m  chemical reactions and their  
 associated stochastic rate constants mkkk ,...,, 21 . 
3. Initialize the current time 0←t . 
4. Calculate the propensity, maaa ,...,, 21 , for each of the m   
 chemical reactions. 
5. Sum the propensity values: ∑

=

=
M

i
itotal aa

1

. 

6. Generate a putative time for the chemical system µτ   
 according to an exponential distribution with  
 parameter totala . 
7. Choose a reaction µ  using a uniformly distributed random  
 number and a distribution of the form  
 P(Reaction=µ )=

totala
aµ . 

8. Change the number of molecules nXXX ,...,, 21 , to reflect the  
 execution of reaction µ .   
9. Set µτ+← tt . 
10. Go to Step 4. 
 

Figure 3-3: Gillepie’s Direct Method. 
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system.  The reaction selection is then handled by dividing each individual propensity by 

the total propensity, giving a normalized uniform distribution which can be used to select 

a reaction based on the generation of a uniform random number.  Using the Direct 

Method, we only need to generate one exponentially distributed random number and one 

uniformly distributed random number per iteration of the algorithm, regardless of 

chemical system size, thus improving performance over the First Reaction Method. 

 

3.5  The Dependency Graph 

In the late 1990’s, Gibson and Bruck developed several key enhancements to 

Gillespie’s methods that improve performance by an order of magnitude.  These 

enhancements were presented in [6].   

The first enhancement was the creation of a dependency graph to determine which 

propensity values need to be updated when a particular reaction is executed.  During 

initialization, each reaction is examined to see what effect its execution has on the species 

population values of the system.  If a reaction A is executed that modifies the species 

populations of another reaction B, reaction B’s propensity must be recalculated upon the 

execution of reaction A.  This is more easily understood with an example.  Suppose we 

convert the example system given in section 3.2 to the following set of reactions: 

 

A:  DNA -> DNA + mRNA     

B: mRNA -> *             

C: mRNA -> mRNA + Protein  
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D: Protein -> *    

E: 2 Protein -> Dimer   

F: Dimer -> 2 Protein   

 

Notice the execution of Reaction A only modifies the population of the species mRNA.  

Since the calculation of the propensity values for Reaction B and C depend on the 

population of mRNA, Reaction A affects Reaction B and C.  Reactions A, D, E, and F are 

unaffected by the execution of Reaction A and will therefore have the same propensity 

before and after the execution of Reaction A.  We can therefore build a dependency graph 

which stores which propensity values must be recalculated for the execution of each 

reaction and use this dependency graph to prevent the unnecessary calculation of reaction 

propensities thus improving performance.  The adjacency matrix for the dependency 

graph is given in figure 3-4, where the rows represent the reactions executed and the 

columns represent the reaction affected. 

Because the adjacency matrix for most gene regulatory network models is very 

sparse, this enhancement greatly improves the performance of Gillespie’s methods. 

 

3.6  Gibson and Bruck’s Next Reaction Method 

Using a dependency graph and several other enhancements to Gillespie’s 

methods, Gibson and Bruck proposed a new method called the Next Reaction Method, 

which today remains the fastest known algorithm for exactly stochastically simulating a 

spatially homogeneous system.  This algorithm is stated in figure 3-5 [6]. 
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 A B C D E F 
A  X X    
B  X X    
C    X X  
D    X X  
E    X X X 
F    X X X 

 
Figure 3-4:  Example Adjacency Matrix.  
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1. Initialize: 

 (a) Initialize nXXX ,...,, 21 , set 0←t ; 
 (b) Generate a dependency graph G  based on the  
  stoichiometry of the m  chemical reactions; 
 (c) Calculate the propensity function, maaa ,...,, 21 , for  
  each of the m  chemical reactions; 
 (d) For each reaction i , generate a putative time, iτ ,  
  according to an exponential distribution with  
  parameter ia ; 
 (e) Store the iτ  values in an indexed priority queue  
  P . 
2. Let µ  be the reaction whose putative time, µτ  stored in 
 P  is least. 
3. Let τ  be µτ . 
4. Change the number of molecules to reflect the execution  
 of reaction µ .  Set τ←t . 
5. For each edge (µ ,α ) in the dependency graph G , 
 (a) Update αa ; 
 (b) If µα ≠ , set ttaa newold +−← ))(/( ,, αααα ττ ; 
 (c) If µα = , generate a random number, ρ , according  
  to an exponential distribution with parameter µa ,  
  and set t+← ρτα ; 
 (d) Replace the old in ατ  value in P  with the new  
  value. 
6. Go to step 2.  
 

Figure 3-5: Gibson and Bruck’s Next Reaction Method. 
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 Besides the dependency graph mentioned in the previous section, which is 

initialized in step 1b and is used in step 5 to reduce the number of calculations required 

for each step of the algorithm, Gibson and Bruck make two key enhancements to the 

algorithm to improve performance.   

 The first enhancement is to change from relative time to absolute time and reuse 

random numbers that have not yet been used to effect the system time.  This is 

accomplished by generating putative times for each reaction on initialization (see step 

1d), selecting the reaction to execute (see step 2), and generating a new putative time for 

the reaction executed (see step 5c).  For reactions that were not executed, but had their 

propensity values affected by the execution of the selected reaction, their putative times 

are scaled in step 5b using the following equation. 

 

 ttaa newold +−← ))(/( ,, αααα ττ      (5) 

 

This reduces the number of random numbers that must be generated for each iteration of 

the algorithm to only one, which is an improvement on the M random numbers required 

for the First Reaction Method and the two random numbers required for the Direct 

Method. 

The other enhancement made to Gillespie’s methods is the use of an indexed 

priority queue, initialized in Step 1e of this method and used in Step 2.  Recall that in the 

First Reaction Method, after the putative times for each of the reactions had been 

determined, a linear search of the putative times is required to determine which reaction 

to execute.  This search has a time complexity which is proportional to M, the number of 
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reactions in the system.  In the Next Reaction Method, the indexed priority queue is a data 

structure which stores putative times in a binary tree, where the root node contains the 

node with the minimum putative time.  This data structure can be maintained by 

operations which are proportional to the logarithm of M. 

 

3.7  Gibson and Bruck’s Efficient Direct Method 

 Although Gibson and Bruck propose that the Next Reaction Method is the most 

efficient technique for stochastically simulating coupled chemical reactions, they also 

suggest ways to improve the Direct Method.  The first enhancement is to use a 

dependency graph to reduce the number of propensity calculations required for each 

iteration of the algorithm.  The next enhancement is used to accelerate the calculation of 

the total propensity and reaction selection stages by storing the propensity values in a 

data structure which we will refer to as a “sum tree.”  A sum tree consists of a binary tree 

where each of the leaf nodes contains a propensity value and each parent node contains 

the sum of its ancestors.  Using this data structure, the total propensity will always be 

stored at the root of the binary tree and this data structure can be used as a search tree 

when selecting the reaction.  This reduces the reaction selection step from time 

complexity O(n) to O(log n) and reduces the number of calculations that must be 

performed when determining the total propensity of the system.  Because Gibson and 

Bruck did not name this algorithm, we will refer to it as the Efficient Direct Method.  

This algorithm is stated in figure 3-6. 
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1. Initialize: 

 (a) Initialize nXXX ,...,, 21 , set 0←t ; 
 (b) Generate a dependency graph G  based on the  
  stoichiometry of the m  chemical reactions; 
 (c) Calculate the propensity function, maaa ,...,, 21 , for  
  each of the m  chemical reactions; 
 (d) Store the propensity values maaa ,...,, 21  in a sum tree  
  T ; 
2. Retrieve the value ∑

=

=
M

i
itotal aa

1

 by reading the root node of  
 the sum tree T . 
3. Generate a putative time for the chemical system µτ   
 according to an exponential distribution with  
 parameter totala . 
4. Choose a reaction µ  using a uniformly distributed random  
 number and a distribution of the form  
 P(Reaction=µ )=

totala
aµ  by searching T . 

5. Change the number of molecules nXXX ,...,, 21 , to reflect the  
 execution of reaction µ .   
6. Set µτ+← tt . 
7. For each edge (µ ,α ) in the dependency graph G , 
 (a) Update αa ; 
 (b) Replace the old αa  value in T  with the new value. 

(c) Update αa ’s parent nodes’ values in T . 
10. Go to Step 4. 
 

Figure 3-6:  Gibson and Bruck’s Efficient Direct Method.  
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3.8 Other Techniques 

Several other techniques exist for modeling gene regulatory networks.  The 

simplest way is to represent the regulatory network as a directed graph where the vertices 

are genes and the edges represent interactions between genes.  Often the basic definition 

of a directed graph is expanded to store whether the interaction between the genes is 

positive or negative regulation.  Another modeling approach is to use Bayesian networks, 

where vertices in an acyclic graph represent genes or other elements that effect the 

system and correspond to random variables.  Boolean networks are another technique 

used where the expression of a gene is considered on or off and the interaction between 

genes can be described by a digital circuit composed of AND and OR gates.  A good 

review of these techniques along with more information on the various differential 

equations models used to represent gene regulatory networks is given in [3].    

One of the most recent developments in gene regulatory network modeling has 

been Gillespie’s work on “tau-leaping” methods, which is a form of approximate 

stochastic simulation where multiple reactions are executed in a single step.  These 

techniques greatly improve the performance of stochastic simulation at the potential cost 

of accuracy.  For more information on this technique, consult [20,21].   

 

3.9 Conclusion 

This chapter has introduced the reader to several techniques for modeling gene 

regulatory networks.  Because molecular dynamics modeling is inefficient and other 

modeling techniques can be inaccurate, this work will focus on exact stochastic 
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simulation.  A review of the existing techniques for exact stochastic simulation were 

presented, highlighting the works of Gillespie and Gibson and Bruck.  In the following 

chapters we can use this discussion to analyze the performance of these techniques and 

discuss further enhancements to these methods. 
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Chapter 4 

Analyzing Exact Stochastic Simulation 

 The previous chapter introduced several different exact stochastic simulation 

algorithms, primarily the First Reaction Method, the Direct Method, the Next Reaction 

Method, and the Efficient Direct Method.  In this chapter, we will analyze the 

performance of each these algorithms by coding the algorithms in C++ and examining 

their performance on a set of generated input files ranging in model size.  We also will 

suggest modifications to these algorithms and demonstrate that these modifications can 

improve simulator performance. 

 

4.1 Creating a Model Set 

 To model the performance of the simulation algorithms accurately we must first 

create a set of models that produce consistent results.  To do this, we create a program 

that generates models based on two parameters, a reaction count and an “update factor”.  

The reaction count is the number of reactions represented in the model and indicates 

model size.  The update factor dictates the average number of propensity updates that 

must be performed when a reaction is executed.  For instance, with the following model, 

 

1: A -> B 

2: B -> C 

3: C -> D 

4: D -> E 
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5: E -> F 

6: F -> A 

 

the reaction count is 6 and when any reaction is executed, 2 reactions must be updated 

(i.e. if reaction 3 is executed, the propensity values for reaction 3 and 4 must be updated).  

The update factor is defined in this work as the number of reactions that must be updated 

for each reaction.  Therefore the update factor for the model given above is 2.  The 

following model has 6 reactions and an update factor 4. 

 

1: A -> B 

2: A -> B 

3: B -> C 

4: B -> C 

5: C -> A 

6: C -> A 

  

In this case, the execution of reaction 3 impacts the propensity value of reactions 3, 4, 5, 

and 6,  therefore the update factor is 4.   

The maximum possible update factor for a given model is the model size (the 

number of reactions).  In this scenario, every reaction would affect the propensity value 

of every other reaction.  In real chemical systems, the update factor tends to be much less 

than the model’s reaction count (less than 10%), and this underlying assumption is what 

makes Gibson and Bruck’s performance enhancements possible.  With a high update 
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factor, the dependency graph’s adjacency matrix would be very dense making the number 

of propensity updates approach the number of reactions in the model for each step of the 

algorithm.   

The two models presented previously have uniform structure in that each reaction 

affects the same number of reactions.  Models could be built that affect different numbers 

of reactions, like the following model. 

 

1: A -> B 

2: B -> C 

3: C -> A 

4: B -> A 

 

 In this case, reaction 1 affects the propensity value of 3 reactions and reaction 3 

only affects the propensity value of 2 reactions.  Depending on the rate constants of the 

reaction 1 and reaction 3, along with the time evolution of the population species, the 

update factor of the model can vary as the simulator executes.  Using a model with 

varying update factor would make characterizing performance of each simulator difficult, 

so we generate models with uniform structure.  Our model set sequentially sweeps update 

factors 2 through 8 by increments of 2 and sweeps reaction counts from 12 to 600 at 12 

reaction increments.  This creates 200 models to run for each simulator.  The code used to 

generate these models can be found in the appendices. 

 Although the simulation algorithms allow reactions to be entered that contain 

multiple reactants with varying coefficients, to compare the performance of our 
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simulators we limit our models to have uniform structure to simplify our analysis.  Each 

reaction consists of one reactant and one product.  We assume that using more complex 

reactions will not effect our performance comparison, because the cost of calculating the 

propensity functions will be the same for each simulator. 

 Each simulation is executed on a Sun Ultra-60 processor running Sun OS v5.8.  

The simulators are compiled using the Sun Workshop 6 C++ compiler with the highest 

performance optimization settings.  The performance results printed in this work are 

gathered by averaging four separate runs of the simulators running each model for 

5,000,000 reactions. 

 

4.2 The First Reaction Method 

 We start our performance analysis by coding the Gillespie’s First Reaction 

Method (First), the oldest, simplest and most inefficient algorithm for exact stochastic 

simulation.  Because this algorithm must generate m (the number of reactions) random 

numbers for each iteration of the algorithm and does not take advantage of a dependency 

graph, we would expect the execution time of this algorithm to grow linearly with 

reaction count and to be unaffected by the update factor.  The figure 4-1 shows the 

performance of the First simulator and verifies our expectation. 

We then add the dependency graph proposed by Gibson and Bruck to see if this 

enhancement positively impacts the performance of the simulator.  We will call this 

simulator Gillespie’s First Reaction Method with a Dependency Graph and abbreviate it 

FirstDG.  Using a dependency graph we can significantly reduce the number of 

propensity recalculations that must be performed in each step of the algorithm, but we 
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Figure 4-1: First Execution Times. 
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still must generate m exponentially distributed random numbers for each iteration.  It 

would be expected that FirstDG would outperform First for small update factors, because 

FirstDG would update only a small number of propensities per iteration.  Figure 4-2 

shows that for update factors as high as 8, FirstDG does outperform First.   

 

4.3 The Direct Method 

 We now look at the Direct Method, Gillespie’s improvement to the First Reaction 

Method.  Because the Direct Method (Direct) does not utilize a dependency graph, we 

once again expect that its performance will not be affected by the update factor.  Figure 

4-3 demonstrates this.  The outlier at model size 175 is due to machine load imbalance. 

We can also show that Direct outperforms First and FirstDG in all cases by 

looking at figures 4-4 and 4-5.  This occurs because Direct generates only two random 

numbers for each iterations of its algorithm, where First and FirstDG must generate m 

(the number of reactions in the model) random numbers. 

Now we add a dependency graph to the Direct Method, to create simulator 

DirectDG, and see if this improves the performance of Direct.  Figure 4-6 shows that 

DirectDG outperforms Direct for update factors as high as 8. 

 In the DirectDG simulator, we noticed that for each iteration of the algorithm, the 

propensity values must be summed to generate the total propensity, which becomes a 

significant performance bottleneck as reaction count increases.  To reduce this update 

time, we implemented another simulator called DirectDG2, which when the individual 

reaction propensity values are being updated, the total propensity value is also updated by 
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Figure 4-2: First vs. FirstDG (Update Factor = 8) 
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Direct vs. First and FirstDG
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Figure 4-4: Direct vs. First and FirstDG (Update Factor = 2) 
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Figure 4-6: DirectDG vs. Direct (Update Factor = 8) 
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subtracting the old propensity value and adding the newly calculated propensity value.  

This enhancement makes the total propensity calculation time depend on the update 

factor instead of the reaction count, improving performance.  A comparison of the 

DirectDG and DirectDG2 simulators shows that DirectDG2 outperforms DirectDG for 

update factors as high as 8.  A plot of this is shown in figure 4-7.   

 

4.4 The Efficient Direct Method 

 The Efficient Direct Method (EfficientDirect) was first outlined in Gibson and 

Bruck’s paper on improving the performance of Gillespie’s simulation algorithms [5,6].  

Their enhancements included the addition of a sum tree.  This algorithm is stated in detail 

in chapter 3.  Figure 4-8 shows that this algorithm’s performance is greatly affected by 

the update factor and grows slowly with respect to reaction count.  Once again the 

outliers are caused by machine load imbalance.  Figures 4-9 and 4-10 compare the 

performance of EfficientDirect with DirectDG2.  Notice that for small models, 

DirectDG2 outperforms EfficientDirect, because the sum tree adds significant overhead 

and almost no performance gain for small models and a large performance improvement 

for models with high reaction count. 

 

4.5 The Next Reaction Method 

 The Next Reaction Method (Next) developed by Gibson and Bruck is widely 

accepted as the fastest known simulator for performing exact stochastic simulation [6].  

Figure 4-11 shows that because of the indexed priority queue and other performance  
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Figure 4-7: DirectDG2 vs. DirectDG (Update Factor = 8) 

 

EfficientDirect Execution Times

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

)

Update Factor = 2
Update Factor = 4
Update Factor = 6
Update Factor = 8

Figure 4-8: EfficientDirect Execution Times 



www.manaraa.com

 48

EfficientDirect vs. DirectDG2
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Figure 4-9: EfficientDirect vs. DirectDG2 (Update Factor = 2) 
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Figure 4-10: EfficientDirect vs. DirectDG2 (Update Factor = 8) 
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Next Execution Times
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Figure 4-11: Next Execution Times  
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enhancements implemented in the Next Reaction Method, the execution time for the Next 

Reaction Method does not grow in relation to reaction count, but is greatly affected by 

update factor.  Figures 4-12 and 4-13 show that Next outperforms EfficientDirect for all 

models.  Figures 4-14 and 4-15 show that Next only outperforms the DirectDG2 

algorithm for larger models.  Outliers are caused by machine load imbalance. 

 

4.6 Conclusion 

 The performance data demonstrates that the new DirectDG2 algorithm is an 

efficient algorithm for simulating models with small reaction counts and larger update 

factors.  The Next simulator is shown to be the ideal solution for simulating large models.  

The other approaches are not as competitive in the scenarios considered. 
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Next vs. EfficientDirect
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Figure 4-12: Next vs. EfficientDirect (Update Factor = 2) 
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Figure 4-13: Next vs. EfficientDirect (Update Factor = 8) 
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Next vs. DirectDG2
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Figure 4-14: Next vs. DirectDG2 (Update Factor = 2) 

 

Figure 4-15: Next vs. DirectDG2 (Update Factor = 8) 
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Chapter 5 

The Adaptive Method 

 Now that we have measured the performance of several exact stochastic 

simulation algorithms and discussed how their performance is impacted by model size 

and update factor, we now focus on creating a system for selecting the algorithm that 

optimizes performance when simulating a particular model.  To accomplish this, we 

derive an estimate for how to determine which algorithm to select based on update factor 

and reaction count.  Unfortunately, it is impossible to calculate the update factor before 

simulating the model.  To overcome this problem, we propose a new algorithm for 

stochastic simulation called the Adaptive Method, which monitors the update factor as the 

simulator progresses and adaptively controls which simulator to use for the model.  We 

then build this simulator and compare it to the performance of the other simulators.  The 

analysis shows that this technique is effective in improving the overall performance of 

stochastic simulation.  

 

5.1 Next vs. DirectDG2 

 The two best performing simulators from chapter four were the Next and the 

DirectDG2 simulators.  A comparison of their execution times is given in figures 5-1 to 

5-4. 

 The results show that DirectDG2 outperforms Next for models with a small 

reaction count.  The point at which Next begins to outperform DirectDG2 depends on the 

update factor.  Figure 5-5 shows a plot of the approximate points where the execution  
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Figure 5-1: Next vs. DirectDG2 (Update Factor = 2) 

 

Figure 5-2: Next vs. DirectDG2 (Update Factor = 4) 
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Figure 5-3: Next vs. DirectDG2 (Update Factor = 6) 
 
 
 

Figure 5-4: Next vs. DirectDG2 (Update Factor = 8) 
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 Figure 5-5: Intersection of Execution Time Curves for DirectDG2 vs. Next  
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time curves meet and shows which simulator is better to use based on the properties of 

the model. 

 Using figure 5-5 we should be able to design a simulation algorithm that 

examines the model at startup and determines which algorithm is better to use.  To do 

this, we need to know the model size and the update factor.  Measuring the model size at 

startup is trivial, but the update factor is dependent on which reactions are executed and 

can vary as the simulation progresses.  Therefore to correctly handle the update factor, we 

must measure the update factor as the simulation progresses and adapt our simulator to 

select the simulation algorithm that optimizes performance.  To do this, we have designed 

a simulation algorithm called the Adaptive Method. 

  

5.2 The Adaptive Method 

A summarized version of the Adaptive Method algorithm is stated in figure 5-6.  

The complete Adaptive Method algorithm is given in figure 5-7. 

 The first step of the algorithm is similar to the Next simulator, initializing a 

dependency graph and an indexed priority queue.  The first step also initializes a variable 

called Mode which stores the current simulation algorithm that is being used, 

ReactionsExecuted which stores the number of reactions executed since the last 

update factor check, UpdateCount which stores the number of updates of propensity 

values performed since the last update factor check, and UpdateFactorThreshold 

which stores the estimated value of where the DirectDG2 simulator will begin to 

outperform the Next simulator. 
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1. Initialize 
 (a) Initialize data structures for performing NEXT; 
 (b) Set Mode = NEXT; 
 (c) Reset ReactionsExecuted and UpdateCount to 0; 
 (d) Estimate the UpdateFactorThreshold; 
2. If (Mode == NEXT)  
 (a) Run a single step of NEXT; 
 (b) update UpdateCount; 
3. If (Mode == DIRECTDG2) 
 (a) Run a single step of DIRECTDG2; 
 (b) update UpdateCount; 
4. Increment ReactionsExecuted; 
5. If (ReactionsExecuted == PERIOD)  
 (a) Compute the current UpdateFactor; 
 (b) If we should switch to DIRECTDG2  
  i. Initialize DIRECTDG2 data structures; 
  ii. Set Mode = DIRECTDG2; 
 (c) If we should switch to NEXT  
  i. Initialize NEXT data structures; 
  ii. Set Mode = DIRECTDG2; 
 (d) Reset ReactionsExecuted and UpdateCount to 0; 
5. Goto 2. 
 
 
Figure 5-6:  Summary of the Adaptive Method 
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1. Initialize: 
 (a) Initialize nXXX ,...,, 21  
 (b) Set t  = 0; 
 (b) Generate a dependency graph G  based on the  
  stoichiometry of the m  chemical reactions; 
 (c) Calculate the propensity function, maaa ,...,, 21 , for  
  each of the m  chemical reactions; 
 (d) For each reaction i , generate a putative time, iτ ,  
  according to an exponential distribution with  
  parameter ia ; 
 (e) Store the iτ  values in an indexed priority queue  
  P . 
 (f) Set Mode = NEXT; 
 (g) Set ReactionsExecuted = 0; 
 (h) Set UpdateCount = 0; 
 (i) Set UpdateFactorThreshold = (m  – 60) / 30 / 2; 
2. if (MODE == NEXT) then 
 (a) Let µ  be the reaction whose putative time, µτ   
  stored in P  is least. 
 (b) Let τ  be µτ . 
 (c) Change the number of molecules to reflect the  
  execution of reaction µ .  Set τ←t . 
 (d) For each edge (µ ,α ) in the dependency graph G , 
  i. Update αa ; 
  ii. If µα ≠ , set ttaa newold +−← ))(/( ,, αααα ττ ; 
  iii. If µα = , generate a random number, ρ ,  
   according to an exponential distribution  
   with parameter µa , and set t+← ρτα ; 
  iv. Replace the old in ατ  value in P  with the new  
   value. 
  v. Increment UpdateCount; 
3. if (Mode == DIRECTDG2) then 
 (a) Generate a putative time for the chemical system µτ   
  according to an exponential distribution with  
  parameter totala ; 
 (b) Set µτ+← tt ; 
 
 
 
Figure 5-7:  The Adaptive Method 
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 (c) Choose a reaction µ  using a uniformly distributed  
  random number and a distribution of the form  
  

totala
a

action µµ == )Pr(Re ; 
 (d) Change the number of molecules nXXX ,...,, 21 , to  
  reflect the execution of reaction µ ; 
 (e) For each edge (µ ,α ) in the dependency graph G , 
  i. Let temp = αa ; 
  ii. Update αa ; 
  iii. Let totala  = αa  - temp; 
  iv. Increment UpdateCount; 
4. Increment ReactionsExecuted; 
5. If (ReactionsExecuted == PERIOD) then 
 (a) Set UpdateFactor = UpdateCount / PERIOD / 2; 
 (b) if ((UpdateFactor > UpdateFactorThreshold) and  
  (Mode == NEXT)) then 
  i. Set Mode = DIRECTDG2; 
  ii. Sum the propensity values: ∑

=

=
M

i
itotal aa

1

; 
 (c) else if ((UpdateFactor < UpdateFactorThreshold)  
  and (Mode == DIRECTDG2)) then 
  i. Set Mode = NEXT; 
  ii. For each reaction i , generate a putative time,  
   iτ , according to an exponential distribution  
   with parameter ia  added to the current time  
   t ; 
  iii. Store the iτ  values in an indexed priority  
   queue P . 
 (d) set UpdateCount = 0; 
 (e) set ReactionsExecuted = 0; 
6. Goto step 2. 
 

Figure 5-7: continued. 
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 If the current mode is set to NEXT, the second step of the algorithm performs a 

Next simulation step and increments UpdateCount when a propensity value is updated.  

If the current mode is set to DIRECTDG2, The third step of the algorithm performs a 

DirectDG2 simulation step and increments UpdateCount when a propensity value is 

updated.  Step 4 then increments the ReactionsExecuted variable. 

 For every PERIOD reactions executed, Step 5 of the algorithm performs an 

update factor check by computing the current update factor and comparing it to the 

update factor threshold to see if the optimal simulation algorithm is currently being 

executed.  If not, Steps 5b and 5c set the algorithm to the correct algorithm and 

reinitialize the necessary data structures for performing that algorithm.  The value of 

PERIOD used in this performance analysis was 5,000.  Increasing PERIOD will reduce 

the rate at which the algorithm checks the update factor, reducing algorithm switching 

overhead, but causing the simulator to possibly use a non-ideal algorithm for a longer 

period of time.  Decreasing PERIOD will have the opposite affect, increasing the 

overhead associated with switching algorithms, but reducing the amount of time spent 

executing the incorrect algorithm.  Further research is required to determine the best 

value for PERIOD or whether its value could be adaptively controlled.  In this analysis 

the value 5,000 generated results that closely matched the performance of the best 

performing simulation algorithm. 
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5.3 Performance Analysis 

 To analyze the performance of the adaptive method, the same setup that was 

described in chapter 4 was used to test a C++ implementation of the Adaptive Method.  

The results are given in figures 5-8 through 5-11.  Outliers are the result of machine load 

imbalance. 

 Figures 5-8 through 5-11 show that performance of the Adaptive Method closely 

matches the best performing simulator.  The overhead associated with monitoring the 

update factor throughout the execution of the simulator appears to be minimal. 

 All of these tests were run on models where the update factor was fixed to a 

particular value.  When running on a real model, the update factor can change throughout 

the execution of the model.  Because the Adaptive Method checks the simulation’s update 

factor every PERIOD steps, the Adaptive Method can actually outperform the Next and 

DirectDG2 algorithms by choosing an optimal simulation algorithm to run as the 

simulation progresses. 

 To verify that the Adaptive Method is an effective solution for other computers, 

the Adaptive, Next, and DirectDG2 simulators are ported to the Windows platform and 

the test models are run on a 1 GHz Intel Pentium III with 512 MB of RAM running 

Windows XP.  The simulators are compiled using Microsoft Visual C++ using the 

highest optimization settings.  Figures 5-12 through 5-15 show the performance on this 

machines.  The reported values are collected by averaging the execution times for four 

separate runs of each simulator for 1,000,000 reactions. 
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 Figure 5-8: Adaptive Method vs. DirectDG2 and Next (Update Factor = 2) 

 

 Figure 5-9: Adaptive Method vs. DirectDG2 and Next (Update Factor = 4) 
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 Figure 5-10: Adaptive Method vs. DirectDG2 and Next (Update Factor = 6) 

 

 Figure 5-11: Adaptive Method vs. DirectDG2 and Next (Update Factor = 8) 
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Figure 5-12: Windows - Adaptive Method vs. DirectDG2 and Next (UF = 2) 

 

 Figure 5-13: Windows - Adaptive Method vs. DirectDG2 and Next (UF = 4) 
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 Figure 5-14: Windows - Adaptive Method vs. DirectDG2 and Next (UF = 6) 

 

 Figure 5-15: Windows - Adaptive Method vs. DirectDG2 and Next (UF = 8) 
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 From these figures, we observe that our prediction of which algorithm to use for a 

particular model is inaccurate when using a different computer.  This is most apparent in 

Figure 5-15, where the ideal simulation algorithm for models of size greater than 250 

would be the Next method, but the Adaptive Method chooses to continue to use the 

DirectDG2 method up to 300 reactions.  To fix this, we recommend creating a program 

that runs on the computer during installation of the Adaptive Method simulator that 

characterizes the performance of the machine and provides a more accurate estimate of 

the best update factor threshold. 

 

5.4  Implications 

 At this point, some may argue that this work is insignificant because in the future, 

modelers will want to run models with such high reaction counts that the Adaptive 

Method will always choose to use the Next simulation algorithm.  Although this point is 

valid, the key to modeling in the future may be to run smaller models exhaustively and 

build macromodels that characterize the performance of a specific gene regulatory 

networks, then combine these macromodels to form larger models.  For this reason, it 

may be very useful to have a simulator that runs very quickly for models with a small 

reaction count.   

 

5.5  Applying the Adaptive Method to Real Models 

 To validate that the Adaptive Method performs well for real models, we now 

execute a set of four biological models developed by Dr. Chris Cox at the University of 
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Tennessee.  The first, called ENG, is a model of an engineered bioreporter, consisting of 

32 species and 49 reactions.  The second model, TB, consists of 17 species and 23 

reactions and models tuberculosis.  The third model, QS8, is a model of quorum sensing 

in eight Vibrio fischeri cells.  QS8 consists of 122 species and 201 reactions. The final 

model, DIMER, is a simple model of a gene whose protein undergoes dimerization.  This 

model consists of 8 species and 13 reactions.  An SBML descriptions of these models are 

supplied in Appendix C. 

 The Adaptive, DirectDG2, and Next simulators are run on the same Sun machine 

used in chapter 4.  Each model is run for 5,000,000 reactions.  The results of averaging 4 

runs are given in figure 5-16.  The data shows that for models DIMER and TB, the 

simulator with the smallest execution time is DirectDG2.  The data also shows that Next 

is the optimal simulator for executing the QS8 and ENG models.  As expected, the 

Adaptive simulator closely matches this performance of the best performing simulator for 

each model.  Performing such analysis on real models also helps to validate the 

assumptions made when analyzing simulator performance on the artificial model set 

generated in chapter 4. 

 

5.6  Conclusion 

 By monitoring update factor as the simulation progresses, the Adaptive Method 

attempts to select either the DirectDG2 or Next simulation algorithms for predicting the 

time-evolution of the chemical species in a particular model.  By testing the performance 

of the Adaptive Method on the artificial model set developed in chapter 4 and on several 
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Figure 5-16: Real Model Execution Times 
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 real gene regulatory network models, it demonstrates that the Adaptive Method closely 

matches the performance of the optimal algorithm.  To tune the performance of the 

simulator on a particular machine, it is recommended that the software run a suite of 

models to determine the points at which the simulator should use a particular algorithm. 
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Chapter 6 

Fast Propensity Calculation 

 In this chapter, we investigate another possible technique for accelerating 

Gillespie’s stochastic simulation methods by modifying the propensity calculation step to 

reduce the number of multiplications that need to be performed per iteration of the 

algorithm’s main loop.  Several simulators are developed to measure the performance of 

this technique and the results are compared to the execution times of the original 

Gillespie simulators.  Finally, the applicability of this technique is discussed with regards 

to accelerating both software and hardware-accelerated simulators. 

 

6.1  Propensity Calculation 

 Recall from the discussions of Gillespie’s algorithms in chapter three that in the 

First Reaction Method, the reaction propensity is the exponential distribution parameter 

used when estimating the putative time for each reaction.  In the Direct Method, the 

reaction propensity values are summed to produce the total propensity for the entire 

chemical system, which is then used to estimate the putative time for the entire system.  

In either case, the propensities for each reaction must be recalculated for each iteration of 

the algorithm's main loop.  Gibson and Bruck’s dependency graph enhancement 

significantly reduces the number of propensity calculations that must be performed, but at 

least a few propensities still must be recalculated for each loop iteration.  

 Calculation of the propensity values is performed by taking the rate constant for 

the reaction and multiplying it by the number of possible ways the reaction could occur 
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given the current populations of the chemical species.  Since Gillespie’s methods only 

use simple chemical equations consisting of at most two reactants, only three possible 

cases exist for the composition of the reactants: 

 

Type 1:   A -> Products 

Type 2:   A + B -> Products 

Type 3:  A + A -> Products 
 

 To calculate the propensity 1a  of a type 1 reaction, we multiply the rate constant 

for the reaction k  by the current species population of A.  This is given in the equation 

below. 

 

 )()(1 tkAta =          (1) 

 

 To calculate the propensity 2a  of a type 2 reaction, we multiply the rate constant 

for the reaction k  by the current species population of A and the current species 

population of B.  This is because any molecule of A can react with any molecule of B, 

therefore by combinatorics, the propensity equation would be 

 

 )()()(2 tBtkAta =         (2) 

 

 The calculation of the propensity 3a  of a type 3 reaction may be expected to look 

similar to equation 2, but we must remember that a reaction can not occur between a 
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given molecule and itself.  Therefore we determine the equation for a type 3 reaction 

using combinatorics as 

 

 
2

)1)(()()(3
−

=
tAtkAta        (3) 

 

 Using these three equations we can calculate the propensity for a given reaction 

based on the current state of the chemical system. 

 

6.2 Fast Propensity Calculation 

 To calculate the propensity values more quickly, we notice that for a given system 

state we can compute the current propensity values at time t based on the values for the 

previous state at time t-t0, where t0 is the putative time of the last reaction executed.   

Suppose that at time t-t0, we executed a reaction j that changes the value of the 

species population A(t) by some value jA∆ .  We could represent this relation using the 

following equation. 

 

 jAttAtA ∆+−= )()( 0         (4) 

 

Suppose A(t) affected the propensity value of a type 1 reaction i.  We could calculate the 

propensity of reaction i using equation 1.  We could also substitute equation 4 into 

equation 1 to give us 
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 ))(()( 0 jii AttAkta ∆+−=        (5) 

 

Rearranging equation 5 and realizing that )()( 00 ttAktta ii −=− , we can write the 

following equation 

 

 jiii Akttata ∆+−= )()( 0        (6) 

 

When using Gibson and Bruck’s enhancements to Gillespie’s methods, we use a 

dependency graph to determine the value for jA∆  for each reaction.  To utilize fast 

propensity calculation we can precompute the value of ji Ak ∆  during this initialization 

step and use it to calculate the propensity value of reaction i each time reaction j is 

executed.  Notice that using equation 6 to calculate the propensity requires that we only 

perform a single addition for each iteration of the algorithm, which is more efficient than 

the multiplication that would have been performed using equation 1. 

 Similarly we can apply this technique to a type 2 chemical equation.  In this 

scenario, three different situations exist:  reaction j could change the value of the species 

population A(t) by some value jA∆ , reaction j could change the value of the species 

population B(t) by some value jB∆ , or reaction j could change the value of both species 

populations.  In the first case,  

 

 )()( 0ttBtB −=         (7) 
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and 

 

 jAttAtA ∆+−= )()( 0         (8) 

 

Substituting equations 7 and 8 into equation 2, gives us. 

 

 )())(()( 00 ttBAttAkta jii −∆+−=       (9) 

 

Rearranging equation 9 and realizing that )()()( 000 ttBttAktta ii −−=− , we can write the 

following equation 

 

 )()()( 0 tBAkttata jiii ∆+−=        (10) 

 

Once again, we can precompute and store the value of jAk∆  during the initialization step.  

Using equation 10 to calculate the propensity therefore uses one multiplication and one 

addition, instead of two multiplications used by equation 2.   

Using a similar derivation, we can determine that in the second case, where the 

species population of B changes and the species population of A remains the same during 

the execution of reaction j, we can simplify the calculation of the propensity to the 

following equation. 
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 )()()( 0 tABkttata jiii ∆+−=        (11) 

 

Once again we precompute and store the values we can determine during initialization, 

jBk∆  and reduce one of the multiplication steps in equation 2 to an addition. 

 In the third case, where both the species populations of A and B change because 

of the reaction j, we can try to apply the same multiplication reduction techniques, but we 

find that we must do the same number of multiplications as we would have using 

equation 2.  Therefore when both A and B change, we still use equation 2. 

 A type 3 chemical reaction can also be reduced by a single multiply.  If the 

species population of A changes, we get the following equation. 

 

 jAttAtA ∆+−= )()( 0         (12) 

 

When we substitute this value into equation 3, we get the following equation. 

 

 
2

)1)((
))(()( 0

0

−∆+−
∆+−= j

jii

AttA
AttAkta      (13) 

 

Simplifying this equation, and remembering that  

 

2
)1)(()()( 0

0

−−
−=

ttAttAkta ii       (14) 
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we can simplify equation 13 to the following equation. 

 

 )(
2

)()()( 2

0 jj
i

jiii AAktAAkttata ∆+∆−∆+−=      (15) 

 

We can precompute and store the values of ji Ak ∆  and 2/)( 2

jj AAk ∆+∆−  during 

initialization and reduce the one addition and two multiplications using in equation 3 to 

two additions and one multiplication. 

 

6.3  Implementation Details 

 Because floating point numbers are an approximation of real numbers, subtracting 

or adding two values may produce a small error in the least significant digits of the result.  

When using equations 6, 10, 11, and 15 to calculate propensity values for species 

populations that have recently fallen to zero, the propensity values can become non-zero, 

which is incorrect.  This error can then cause the simulator to execute a reaction that does 

not have a sufficient number of reactants and possibly cause species populations to fall 

below zero. 

 To avoid this, an implemention of fast propensity calculation should check to 

ensure that the reactants’ population values are non-zero.  If they are zero, the propensity 

value should be immediately set to zero.  In the case of a type 3 reaction, if the reactant’s 

population value is 1, the propensity value should be set to zero, because this type of 

reaction requires the reactant’s population to be at least 2.  
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6.4  Performance Analysis 

 To analyze the performance of this enhancement, two new simulators are coded in 

C++ that implement fast propensity calculation.  The first simulator is the Next Reaction 

Method with Fast Propensity Calculation simulator, or NextFPC, which is derived from 

the Next simulator defined in chapter 3.  The second simulator is the Direct Method with 

Fast Propensity Calculation simulator, or DirectFPC, which is derived from the 

DirectDG2 simulator.  The performance of these complementary simulators are 

compared by executing the same set of model files under the same conditions as the 

analysis performed in chapter 4.  Plots of these execution times for these simulators are 

given in figures 6-1 and 6-2. 

 A more effective way to view figures 6-1 and 6-2 would be to plot the speedup, 

which is ratio of the execution time of the enhanced simulator (i.e. NextFPC) and the 

execution time of the original simulator (i.e. Next).  A speedup of greater than 1.0 shows 

that the enhancement improves simulator performance and a speedup of less than 1.0 

shows that the enhancement degrades simulator performance.  Speedup plots are given in 

figures 6-3 and 6-4. 

 Figures 6-3 and 6-4 show that by using fast propensity calculation, we see no 

performance improvement.  The several points that show significant speedup are outliers 

caused by machine load imbalance.  These speedup results are consistent with results 

gathered from running models with other update factors.  Even though fast propensity 

calculation reduces many multiplications to additions, the overhead associated with 

storing and retrieving the parameters values required to do fast propensity calculation 

outweighs this improvement. 
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 Figure 6-1: Execution Times for Next and NextFPC (Update Factor = 6) 

 

Figure 6-2: Execution Times for DirectDG2 and DirectFPC (UF = 6) 
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DirectDG2 vs. DirectFPC
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Figure 6-3: Speedup for DirectDG2 vs. DirectFPC (Update Factor = 6) 
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Figure 6-4: Speedup for NextFPC vs. Next (Update Factor = 6) 



www.manaraa.com

 81

6.5  Implications 

 Although the software version of fast propensity calculation shows no significant 

gain versus the original simulation algorithms, this work is significant when discussing 

the possibility of implementing Gillespie’s algorithms in hardware.  New computer 

architectures are currently being developed which allow reconfigurable hardware co-

processors to exist near or on the microprocessor with fast interconnect.  Because the 

reconfigurable hardware devices can be customized and parallelized to meet the specific 

need of the software problem, they can demonstrate a significant performance 

enhancement over simple microprocessor implementations.  These algorithms could be 

further accelerated by developing a custom application specific integrated circuit that 

performs the algorithm.  In both situations, using the fast propensity calculation 

techniques described in this chapter could be used to reduce both the size and latency of 

the hardware, because an addition module uses less area and delay than a multiplication 

module. 

 

6.6  Conclusion 

 The fast propensity calculation techniques presented in this chapter are an 

effective alternative to the propensity calculation techniques proposed by Gillespie’s 

original algorithms.  Although these techniques may not show significant performance 

improvement for software versions of the simulators, they could be used to reduce the 

area and delay of a hardware accelerated version of the simulator significantly. 
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Chapter 7 

Conclusions and Future Work 

Gene regulatory networks are the complex chemical interactions between 

biochemicals that allow cells to control their behavior and sustain life.  A detailed 

understanding of gene regulatory networks is critical to the development of new gene 

therapy techniques and pharmaceuticals.  One tool that has already been successful in 

helping to analyze gene regulatory networks is computer modeling.  Cell models can be 

used to predict cell behavior, validate published results, test treatment strategies, and help 

develop nanoscale biological tools. 

One of the major factors limiting the widespread use of modeling in the biological 

community is the efficiency and accuracy of the algorithms used to simulate such models.  

This work has focused on analyzing and enhancing the performance of the exact 

stochastic simulation algorithms developed by Gillespie and by Gibson and Bruck.  

These techniques are widely accepted as being accurate, but are normally not used 

because they are inefficient. 

To analyze the performance of the various simulation algorithms, an artificial 

model set was developed that allowed the simulators to produce consistent and 

predictable performance results.  Through this analysis it was discovered that by 

modifying Gillespie’s Direct Method, we could outperform the Next Reaction Method for 

models with high update factor and low reaction count.  This discovery is contrary to the 

belief that the Next Reaction Method is the most efficient method for exactly simulating 

all stochastic biological models .  
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 Also through this analysis of the artificial model set, we were able to characterize 

the set of models that would perform well for a particular model.  To monitor these 

factors and adaptively control the simulation algorithm used to simulate a particular 

model, the Adaptive Method was developed.  This method performed similarly to the best 

performing algorithm for each model in the artificial set.  To validate the assumptions 

made in developing the artificial model set and to validate that the Adaptive Method 

performed well under real conditions, a set of actual gene regulatory network models 

were analyzed.  The performance results showed that the Adaptive Method is an efficient 

technique for performing stochastic simulation of coupled chemical reactions. 

 In an attempt to further enhance performance, a new technique called Fast 

Propensity Calculation was developed to reduce several multiplications to additions.  

When implemented, this technique did not show significant performance improvement 

over existing methods in software, but it is possible that Fast Propensity Calculation 

could be used to reduce the area and delay of custom hardware accelerators for stochastic 

simulation.  This hardware acceleration approach is an area of further research. 

  Further analysis could also be performed to examine adaptively controlling the 

PERIOD variable in the Adaptive Method to further improve performance.  The Adaptive 

Method could also possibly combine the use of new approximate techniques like 

Gillespie’s tau-leaping algorithm to further improve performance.  Investigations into 

using parallel algorithms or distributed computing to accelerate these simulation 

algorithms would also be useful. 
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 The development of the Adaptive Method and Fast Propensity Calculation serve 

as additional steps in the creation of an accurate and efficient platform for the 

development of computer models for gene regulatory networks.   
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Appendix A – Simulator Source Code 
 
The following pages include the source code used to generate each of the simulators. 
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Adaptive.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
#include "DependencyGraph.h" 
#include "MinHeap.h" 
#include <iostream> 
 
using namespace std; 
 
#define NEXT 1 
#define DIRECT 2 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
  DependencyGraph dependencyGraph(model); 
  MinHeap minHeap; 
   
  double currentTime = 0.0; 
  double *propensities = new double[model.reactionCount]; 
  double *putativeTimes = new double[model.reactionCount]; 
  double totalPropensity = 0.0; 
  int i; 
  long reactionCount = 0; 
  long updateCount = 0; 
  int selectedReaction; 
 
  double updateFactorThreshold = ((double)(model.reactionCount-
60))/30.0/2.0; 
  int mode = NEXT; 
 
  for(i=0; i<model.reactionCount; i++) { 
    propensities[i] = model.reactions[i].getPropensity(); 
    putativeTimes[i] = random.getExponential()/propensities[i]; 
    minHeap.add(putativeTimes[i]); 
  } 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) {     
    if (mode == DIRECT) { 
      double scaledRand = totalPropensity * random.getUniform(); 
      for(i=0; i<model.reactionCount; i++) { 
 if (propensities[i] != 0.0) { 
   selectedReaction = i; 
   scaledRand -= propensities[i]; 
   if (scaledRand <= 0.0) break; 
 } 
      } 
 
      model.reactions[selectedReaction].execute(); 
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      currentTime += random.getExponential()/totalPropensity; 
 
      IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
      updateCount += dependencies->size(); 
      for(i=0; i<dependencies->size(); i++) { 
 int index = dependencies->get(i); 
 totalPropensity -= propensities[index]; 
 propensities[index] = model.reactions[index].getPropensity(); 
 totalPropensity += propensities[index]; 
      } 
    } else { 
      selectedReaction = minHeap.getMin(); 
 
      model.reactions[selectedReaction].execute(); 
 
      currentTime = putativeTimes[selectedReaction]; 
 
      IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
      updateCount += dependencies->size(); 
      for(i=0; i<dependencies->size(); i++) { 
 int index = dependencies->get(i); 
 double oldPropensity = propensities[index];  
 propensities[index] = model.reactions[index].getPropensity(); 
 if (index != selectedReaction) { 
   if (oldPropensity == 0.0) { 
     putativeTimes[index] = currentTime + 
random.getExponential()/propensities[index]; 
   } else { 
     putativeTimes[index] = currentTime + oldPropensity / 
propensities[index] * (putativeTimes[index] - currentTime); 
   } 
   minHeap.update(index,putativeTimes[index]); 
 } 
      }     
      putativeTimes[selectedReaction] = currentTime + 
random.getExponential()/propensities[selectedReaction]; 
      minHeap.update(selectedReaction,putativeTimes[selectedReaction]); 
    } 
 
    if (parameters.output) model.printState(currentTime); 
     
    reactionCount++; 
    if (reactionCount == 5000) { 
      double updateFactor = 
(double)updateCount/(double)reactionCount/2.0; 
 
      if ((updateFactor > updateFactorThreshold) && (mode == NEXT)) { 
 mode = DIRECT; 
 totalPropensity = 0.0; 
 for(i=0; i<model.reactionCount; i++) { 
   totalPropensity += propensities[i]; 
 } 
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      } else if ((updateFactor < updateFactorThreshold) && (mode == 
DIRECT)) { 
 mode = NEXT; 
 for(i=0; i<model.reactionCount; i++) { 
   putativeTimes[i] = currentTime + 
random.getExponential()/propensities[i]; 
   minHeap.update(i,putativeTimes[i]); 
 }  
      } 
 
      updateCount = 0; 
      reactionCount = 0; 
    } 
  } 
} 
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DependencyGraph.h 
 
#ifndef DEPENDENCYGRAPH_H 
#define DEPENDENCYGRAPH_H 
 
#include "IntVector.h" 
#include "Model.h" 
 
class DependencyGraph { 
 private: 
  IntVector *dependencies; 
 
 public: 
  DependencyGraph(const Model &model); 
  IntVector* getDependencies(int reactionIndex); 
}; 
 
#endif 
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DependencyGraph.cc 
 
#include "DependencyGraph.h" 
 
DependencyGraph::DependencyGraph(const Model &model) { 
  dependencies = new IntVector[model.reactionCount]; 
 
  for(int i=0; i<model.reactionCount; i++) { 
    Reaction *reaction1 = &model.reactions[i]; 
    for(int j=0; j<model.reactionCount; j++) { 
      Reaction *reaction2 = &model.reactions[j]; 
      for(int k=0; k<reaction1->reactantCount; k++) { 
 int reactantIndex = reaction1->reactants[k].speciesIndex; 
 int change = 0; 
 int z; 
 for(z=0; z<reaction2->reactantCount; z++) { 
   if (reaction2->reactants[z].speciesIndex == reactantIndex) { 
     change -= reaction2->reactants[z].coefficient; 
   } 
 } 
 for(z=0; z<reaction2->productCount; z++) { 
   if (reaction2->products[z].speciesIndex == reactantIndex) { 
     change += reaction2->products[z].coefficient; 
   } 
 } 
 if (change != 0) { 
   dependencies[j].add(i); 
   break; 
 } 
      } 
    } 
  } 
} 
 
IntVector* DependencyGraph::getDependencies(int reactionIndex) { 
  return &dependencies[reactionIndex]; 
} 
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Direct.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
   
  double currentTime = 0.0; 
  double *propensities = new double[model.reactionCount]; 
  double totalPropensity = 0.0; 
  int i; 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) { 
    totalPropensity = 0.0; 
    for(i=0; i<model.reactionCount; i++) { 
      propensities[i] = model.reactions[i].getPropensity(); 
      totalPropensity += propensities[i]; 
    } 
     
    double scaledRand = totalPropensity * random.getUniform(); 
    int selectedReaction = -1; 
    for(i=0; i<model.reactionCount; i++) { 
      if (propensities[i] != 0.0) { 
 selectedReaction = i; 
 scaledRand -= propensities[i]; 
 if (scaledRand <= 0.0) break; 
      } 
    } 
 
    model.reactions[selectedReaction].execute(); 
    currentTime += random.getExponential()/totalPropensity; 
 
    if (parameters.output) model.printState(currentTime); 
  } 
} 
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DirectDG.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
#include "DependencyGraph.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
  DependencyGraph dependencyGraph(model); 
   
  double currentTime = 0.0; 
  double *propensities = new double[model.reactionCount]; 
  double totalPropensity = 0.0; 
  int i; 
 
  for(i=0; i<model.reactionCount; i++) { 
    propensities[i] = model.reactions[i].getPropensity(); 
  } 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) {     
    totalPropensity = 0.0; 
    for(i=0; i<model.reactionCount; i++) { 
      totalPropensity += propensities[i]; 
    } 
 
    double scaledRand = totalPropensity * random.getUniform(); 
    int selectedReaction = -1; 
    for(i=0; i<model.reactionCount; i++) { 
      if (propensities[i] != 0.0) { 
 selectedReaction = i; 
 scaledRand -= propensities[i]; 
 if (scaledRand <= 0.0) break; 
      } 
    } 
 
    model.reactions[selectedReaction].execute(); 
    currentTime += random.getExponential()/totalPropensity; 
 
    if (parameters.output) model.printState(currentTime); 
     
    IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
    for(i=0; i<dependencies->size(); i++) { 
      int index = dependencies->get(i); 
      propensities[index] = model.reactions[index].getPropensity(); 
    } 
  } 
} 
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DirectDG2.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
#include "DependencyGraph.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
  DependencyGraph dependencyGraph(model); 
   
  double currentTime = 0.0; 
  double *propensities = new double[model.reactionCount]; 
  double totalPropensity = 0.0; 
  int i; 
 
  for(i=0; i<model.reactionCount; i++) { 
    propensities[i] = model.reactions[i].getPropensity(); 
    totalPropensity += propensities[i]; 
  } 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) {     
    double scaledRand = totalPropensity * random.getUniform(); 
    int selectedReaction = -1; 
    for(i=0; i<model.reactionCount; i++) { 
      if (propensities[i] != 0.0) { 
 selectedReaction = i; 
 scaledRand -= propensities[i]; 
 if (scaledRand <= 0.0) break; 
      } 
    } 
 
    model.reactions[selectedReaction].execute(); 
    currentTime += random.getExponential()/totalPropensity; 
 
    if (parameters.output) model.printState(currentTime); 
     
    IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
    for(i=0; i<dependencies->size(); i++) { 
      int index = dependencies->get(i); 
      totalPropensity -= propensities[index]; 
      propensities[index] = model.reactions[index].getPropensity(); 
      totalPropensity += propensities[index]; 
    } 
  } 
} 
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DirectFPC.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
#include "DependencyGraph.h" 
#include "FastPropensity.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
  DependencyGraph dependencyGraph(model); 
   
  double currentTime = 0.0; 
  double *propensities = new double[model.reactionCount]; 
  FastPropensity fastPropensity(model,propensities,&dependencyGraph); 
  double totalPropensity = 0.0; 
  int i; 
 
  for(i=0; i<model.reactionCount; i++) { 
    propensities[i] = model.reactions[i].getPropensity(); 
    totalPropensity += propensities[i]; 
  } 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) {     
    double scaledRand = totalPropensity * random.getUniform(); 
    int selectedReaction = -1; 
    for(i=0; i<model.reactionCount; i++) { 
      if (propensities[i] != 0.0) { 
 selectedReaction = i; 
 scaledRand -= propensities[i]; 
 if (scaledRand <= 0.0) break; 
      } 
    } 
 
    model.reactions[selectedReaction].execute(); 
    currentTime += random.getExponential()/totalPropensity; 
 
    if (parameters.output) model.printState(currentTime); 
     
    IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
    for(i=0; i<dependencies->size(); i++) { 
      int index = dependencies->get(i); 
      fastPropensity.update(selectedReaction,i,&totalPropensity); 
    } 
  } 
} 
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EfficientDirect.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
#include "DependencyGraph.h" 
#include "SumTree.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
  DependencyGraph dependencyGraph(model); 
  SumTree sumTree(model.reactionCount); 
 
  double currentTime = 0.0; 
  double *propensities = new double[model.reactionCount]; 
  double totalPropensity = 0.0; 
  int i; 
 
  for(i=0; i<model.reactionCount; i++) { 
    propensities[i] = model.reactions[i].getPropensity(); 
    sumTree.update(i,propensities[i]); 
  } 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) {     
    totalPropensity = sumTree.getSum(); 
    double scaledRand = totalPropensity * random.getUniform(); 
    int selectedReaction = sumTree.selectReaction(scaledRand); 
    model.reactions[selectedReaction].execute(); 
    currentTime += random.getExponential()/totalPropensity; 
 
    if (parameters.output) model.printState(currentTime); 
     
    IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
    for(i=0; i<dependencies->size(); i++) { 
      int index = dependencies->get(i); 
      propensities[index] = model.reactions[index].getPropensity(); 
      sumTree.update(index,propensities[index]); 
    } 
  } 
} 
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FastPropensity.h 
 
#ifndef FASTPROPENSITY_H 
#define FASTPROPENSITY_H 
 
#include "FastPropensityEntry.h" 
#include "Model.h" 
#include "DependencyGraph.h" 
 
class FastPropensity { 
 private: 
  FastPropensityEntry ***data; 
  int *entryCount; 
  DependencyGraph *dependencyGraph; 
 
 public: 
  FastPropensity(const Model &model, double *propensities, 
DependencyGraph *dependencyGraph); 
  void update(int selectedReaction, int index); 
  void update(int selectedReaction, int index, double 
*totalPropensity); 
}; 
 
#endif 
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FastPropensity.cc 
 
#include "FastPropensity.h" 
#include "DependencyGraph.h" 
 
FastPropensity::FastPropensity(const Model &model, double 
*propensities, DependencyGraph *dependencyGraph) { 
  int i,j; 
  data = new (FastPropensityEntry **)[model.reactionCount]; 
  entryCount = new int[model.reactionCount]; 
  for(i=0; i<model.reactionCount; i++) { 
    IntVector *dependencies = dependencyGraph->getDependencies(i); 
    data[i] = new (FastPropensityEntry *)[dependencies->size()]; 
    entryCount[i] = dependencies->size(); 
    for(j=0; j<dependencies->size(); j++) { 
      data[i][j] = new 
FastPropensityEntry(&model.reactions[i],&model.reactions[dependencies-
>get(j)],&propensities[dependencies->get(j)]); 
    } 
  } 
} 
 
void FastPropensity::update(int selectedReaction, int index) { 
  data[selectedReaction][index]->execute(); 
} 
 
void FastPropensity::update(int selectedReaction, int index, double 
*totalPropensity) { 
  data[selectedReaction][index]->execute(totalPropensity); 
} 
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FastPropensityEntry.h 
 
#ifndef FASTPROPENSITYENTRY_H 
#define FASTPROPENSITYENTRY_H 
 
#include "Reaction.h" 
 
class FastPropensityEntry { 
 private: 
  int type; 
  double *propensity; 
  Reaction *reaction; 
  long *species1; 
  long *species2; 
  double alpha; 
  double beta; 
   
 public: 
  FastPropensityEntry(Reaction *executedReaction,  
        Reaction *affectedReaction,  
        double *propensityValue); 
  void execute(); 
  void execute(double *totalPropensity); 
}; 
 
#endif 
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FastPropensityEntry.cc 
 
#include "FastPropensityEntry.h" 
#include <stdlib.h> 
 
FastPropensityEntry::FastPropensityEntry(Reaction *executedReaction,  
      Reaction *affectedReaction,  
      double *propensityValue) { 
  reaction = affectedReaction; 
  propensity = propensityValue; 
   
  if (affectedReaction->reactantCount == 1) { 
    if (affectedReaction->reactants[0].coefficient == 1) { 
      type = 1; 
      species1 = affectedReaction->reactants[0].species; 
      int delta = executedReaction->getDelta(affectedReaction-
>reactants[0].speciesIndex); 
      alpha = affectedReaction->rate*delta; 
    } else if (affectedReaction->reactants[0].coefficient == 2) { 
      type = 5; 
      species1 = affectedReaction->reactants[0].species; 
      int delta = executedReaction->getDelta(affectedReaction-
>reactants[0].speciesIndex); 
      alpha = affectedReaction->rate*delta; 
      beta = -affectedReaction->rate/2.0*(delta*delta+delta); 
    } else { 
      type = 4; 
    } 
  } else if (affectedReaction->reactantCount == 2) { 
    if ((affectedReaction->reactants[0].coefficient != 1) || 
 (affectedReaction->reactants[1].coefficient != 1)) { 
      type = 4; 
    } else { 
      int delta1 = executedReaction->getDelta(affectedReaction-
>reactants[0].speciesIndex); 
      int delta2 = executedReaction->getDelta(affectedReaction-
>reactants[1].speciesIndex); 
      if ((delta1 != 0) && (delta2 == 0)) { 
 type = 2; 
 species1 = affectedReaction->reactants[0].species; 
 species2 = affectedReaction->reactants[1].species; 
 alpha = affectedReaction->rate*delta1; 
      } else if ((delta1 == 0) && (delta2 != 0)) { 
 type = 3; 
 species1 = affectedReaction->reactants[0].species; 
 species2 = affectedReaction->reactants[1].species; 
 alpha = affectedReaction->rate*delta2; 
      } else { 
 type = 4; 
      } 
    } 
  } else { 
    type = 4; 
  } 
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} 
 
void FastPropensityEntry::execute() { 
  if (type == 1) { 
    *propensity = *propensity + alpha; 
  } else if (type == 2) { 
    *propensity = *propensity + alpha*(*species2); 
  } else if (type == 3) { 
    *propensity = *propensity + alpha*(*species1);       
  } else if (type == 4) { 
    *propensity = reaction->getPropensity(); 
  } else { 
    *propensity = *propensity + alpha*(*species1) + beta; 
  } 
} 
 
void FastPropensityEntry::execute(double *totalPropensity) { 
  if (type == 1) { 
    *propensity += alpha; 
    *totalPropensity += alpha; 
  } else if (type == 2) { 
    double delta = alpha*(*species2); 
    *propensity += delta; 
    *totalPropensity += delta; 
  } else if (type == 3) { 
    double delta = alpha*(*species1); 
    *propensity += delta; 
    *totalPropensity += delta; 
  } else if (type == 4) { 
    *totalPropensity -= *propensity; 
    *propensity = reaction->getPropensity(); 
    *totalPropensity += *propensity; 
  } else { 
    double delta = alpha*(*species1) + beta; 
    *propensity += delta; 
    *totalPropensity += delta; 
  } 
} 
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First.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
   
  double currentTime = 0.0; 
  double putativeTime; 
  double temp; 
  int selectedReaction; 
  int i; 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) { 
    putativeTime = 
random.getExponential()/model.reactions[0].getPropensity(); 
    selectedReaction = 0; 
    for(i=0; i<model.reactionCount; i++) { 
      temp = 
random.getExponential()/model.reactions[i].getPropensity(); 
      if (temp < putativeTime) { 
 putativeTime = temp; 
 selectedReaction = i; 
      } 
    } 
     
    model.reactions[selectedReaction].execute(); 
    currentTime += putativeTime; 
 
    if (parameters.output) model.printState(currentTime); 
  } 
} 
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FirstDG.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
#include "DependencyGraph.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
  DependencyGraph dependencyGraph(model); 
   
  double currentTime = 0.0; 
  double *propensities = new double[model.reactionCount]; 
  double putativeTime; 
  double temp; 
  int selectedReaction; 
  int i; 
 
  for(i=0; i<model.reactionCount; i++) { 
    propensities[i] = model.reactions[i].getPropensity(); 
  } 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) { 
    putativeTime = random.getExponential()/propensities[0]; 
    selectedReaction = 0; 
    for(i=0; i<model.reactionCount; i++) { 
      temp = random.getExponential()/propensities[i]; 
      if (temp < putativeTime) { 
 putativeTime = temp; 
 selectedReaction = i; 
      } 
    } 
     
    model.reactions[selectedReaction].execute(); 
    currentTime += putativeTime; 
 
    if (parameters.output) model.printState(currentTime); 
 
    IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
    for(i=0; i<dependencies->size(); i++) { 
      int index = dependencies->get(i); 
      propensities[index] = model.reactions[index].getPropensity(); 
    }     
  } 
} 
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IntVector.h 
 
#ifndef INTVECTOR_H 
#define INTVECTOR_H 
 
class IntVector { 
 private: 
  int *data; 
  int count; 
 
 public: 
  IntVector(); 
  void add(int value); 
  int size() const; 
  int get(int index) const; 
}; 
 
#endif 
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IntVector.cc 
 
#include "IntVector.h" 
#include <stdlib.h> 
 
IntVector::IntVector() { 
  count = 0; 
  data = NULL; 
} 
 
void IntVector::add(int value) { 
  int *temp = new int[count+1]; 
  for(int i=0; i<count; i++) { 
    temp[i] = data[i]; 
  } 
  temp[count] = value; 
  if (data != NULL) delete data; 
  data = temp; 
  count++; 
} 
 
int IntVector::size() const { 
  return count; 
} 
 
int IntVector::get(int index) const { 
  return data[index]; 
} 
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makefile  
 
all: bin/PrintModel bin/Direct bin/First bin/DirectDG bin/FirstDG 
bin/DirectDG2 bin/Next bin/EfficientDirect bin/NextFPC bin/DirectFPC 
bin/Adaptive 
 
bin/EfficientDirect: EfficientDirect.cc SpeciesUpdate.o Reaction.o 
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o SumTree.o 
 c++ -O3 -o bin/EfficientDirect EfficientDirect.cc SpeciesUpdate.o 
Reaction.o Model.o Parameters.o Random.o IntVector.o DependencyGraph.o 
SumTree.o 
 
bin/Next: Next.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o 
Random.o IntVector.o DependencyGraph.o MinHeap.o 
 c++ -O3 -o bin/Next Next.cc SpeciesUpdate.o Reaction.o Model.o 
Parameters.o Random.o IntVector.o DependencyGraph.o MinHeap.o 
 
bin/Adaptive: Adaptive.cc SpeciesUpdate.o Reaction.o Model.o 
Parameters.o Random.o IntVector.o DependencyGraph.o MinHeap.o 
 c++ -O3 -o bin/Adaptive Adaptive.cc SpeciesUpdate.o Reaction.o 
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o MinHeap.o 
 
bin/DirectDG2: DirectDG2.cc SpeciesUpdate.o Reaction.o Model.o 
Parameters.o Random.o IntVector.o DependencyGraph.o 
 c++ -O3 -o bin/DirectDG2 DirectDG2.cc SpeciesUpdate.o Reaction.o 
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o 
 
bin/DirectDG: DirectDG.cc SpeciesUpdate.o Reaction.o Model.o 
Parameters.o Random.o IntVector.o DependencyGraph.o 
 c++ -O3 -o bin/DirectDG DirectDG.cc SpeciesUpdate.o Reaction.o 
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o 
 
bin/FirstDG: FirstDG.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o 
Random.o IntVector.o DependencyGraph.o 
 c++ -O3 -o bin/FirstDG FirstDG.cc SpeciesUpdate.o Reaction.o 
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o 
 
bin/NextFPC: NextFPC.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o 
Random.o IntVector.o DependencyGraph.o FastPropensityEntry.o 
FastPropensity.o MinHeap.o 
 c++ -O3 -o bin/NextFPC NextFPC.cc SpeciesUpdate.o Reaction.o 
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o 
FastPropensityEntry.o FastPropensity.o MinHeap.o 
 
bin/DirectFPC: DirectFPC.cc SpeciesUpdate.o Reaction.o Model.o 
Parameters.o Random.o IntVector.o DependencyGraph.o 
FastPropensityEntry.o FastPropensity.o 
 c++ -O3 -o bin/DirectFPC DirectFPC.cc SpeciesUpdate.o Reaction.o 
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o 
FastPropensityEntry.o FastPropensity.o 
 
bin/Direct: Direct.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o 
Random.o 



www.manaraa.com

 110

 c++ -O3 -o bin/Direct Direct.cc SpeciesUpdate.o Reaction.o 
Model.o Parameters.o Random.o 
 
bin/First: First.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o 
Random.o 
 c++ -O3 -o bin/First First.cc SpeciesUpdate.o Reaction.o Model.o 
Parameters.o Random.o 
 
bin/PrintModel: PrintModel.cc SpeciesUpdate.o Reaction.o Model.o 
 c++ -O3 -o bin/PrintModel PrintModel.cc SpeciesUpdate.o 
Reaction.o Model.o 
 
SumTree.o: SumTree.h SumTree.cc 
 c++ -O3 -o SumTree.o -c SumTree.cc 
 
IntVector.o: IntVector.h IntVector.cc 
 c++ -O3 -o IntVector.o -c IntVector.cc 
 
DependencyGraph.o: DependencyGraph.h DependencyGraph.cc IntVector.h 
 c++ -O3 -o DependencyGraph.o -c DependencyGraph.cc 
 
MinHeap.o: MinHeap.h MinHeap.cc 
 c++ -O3 -o MinHeap.o -c MinHeap.cc 
 
Random.o: Random.h Random.cc 
 c++ -O3 -o Random.o -c Random.cc 
 
Parameters.o: Parameters.h Parameters.cc 
 c++ -O3 -o Parameters.o -c Parameters.cc 
 
SpeciesUpdate.o: SpeciesUpdate.h SpeciesUpdate.cc 
 c++ -O3 -o SpeciesUpdate.o -c SpeciesUpdate.cc 
 
Reaction.o: Reaction.h Reaction.cc SpeciesUpdate.h 
 c++ -O3 -o Reaction.o -c Reaction.cc 
 
Model.o: Model.h Model.cc Reaction.h 
 c++ -O3 -o Model.o -c Model.cc 
 
FastPropensityEntry.o: FastPropensityEntry.h FastPropensityEntry.cc 
Reaction.h  
 c++ -O3 -o FastPropensityEntry.o -c FastPropensityEntry.cc 
 
FastPropensity.o: FastPropensity.h FastPropensity.cc 
FastPropensityEntry.h Model.h DependencyGraph.h 
 c++ -O3 -o FastPropensity.o -c FastPropensity.cc 
 
 
 



www.manaraa.com

 111

MinHeap.h 
 
#ifndef MINHEAP_H 
#define MINHEAP_H 
 
class MinHeap { 
 private: 
  class Node; 
 
 public: 
  MinHeap(); 
  ~MinHeap(); 
  int add(double value); 
  void update(int id, double value); 
  int getMin() const; 
 
 private: 
  void add(Node *n, Node *tree); 
  void swap(int id1, int id2); 
  void update_aux(Node *n); 
  int nodeCount(Node *tree) const; 
 
 private: 
  Node *d_top; 
  int d_nodeCount; 
  Node **d_nodes; 
}; 
 
class MinHeap::Node { 
 public: 
  Node *left; 
  Node *right; 
  Node *parent; 
  double value; 
  int id; 
}; 
 
 
#endif 
 



www.manaraa.com

 112

MinHeap.cc 
 
#include "MinHeap.h" 
#include <sstream> 
 
MinHeap::MinHeap() { 
  d_top = NULL; 
  d_nodeCount = 0; 
} 
 
MinHeap::~MinHeap() { 
  int i;  
  for (i=0; i<d_nodeCount; i++) { 
    delete d_nodes[i]; 
  } 
} 
 
int MinHeap::add(double value) { 
  Node *n = new Node(); 
  n->id = d_nodeCount; 
  n->value = value; 
  n->left = NULL; 
  n->right = NULL; 
  n->parent = NULL; 
 
  Node **temp = new (Node *)[d_nodeCount+1]; 
  for(int i=0; i<d_nodeCount; i++) { 
    temp[i] = d_nodes[i]; 
  } 
  temp[d_nodeCount] = n; 
  if (d_nodeCount != 0) { 
    delete d_nodes; 
  } 
  d_nodes = temp; 
  d_nodeCount++; 
 
  if (d_top == NULL) { 
    d_top = n; 
  } else { 
    add(n,d_top); 
  } 
  return d_nodeCount-1; 
} 
 
void MinHeap::update(int id, double value) { 
  d_nodes[id]->value = value; 
  update_aux(d_nodes[id]); 
} 
 
int MinHeap::getMin() const { 
  return d_top->id; 
} 
 
void MinHeap::update_aux(Node *n) { 
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  if ((n->parent != NULL) && (n->value < n->parent->value)) { 
    swap(n->id,n->parent->id); 
    update_aux(n->parent); 
  }  
 
  Node *minchild = NULL; 
  if ((n->left != NULL) && (n->right != NULL)) { 
    if (n->left->value < n->right->value) { 
      minchild = n->left; 
    } else { 
      minchild = n->right; 
    } 
  } else if (n->left != NULL) { 
    minchild = n->left; 
  } else if (n->right != NULL) { 
    minchild = n->right; 
  } else { 
    return; 
  } 
 
  if (minchild->value < n->value) { 
    swap(minchild->id,n->id); 
    update_aux(minchild); 
  } 
} 
 
int MinHeap::nodeCount(Node *tree) const { 
  if (tree == NULL) { 
    return 0; 
  } else { 
    return 1+nodeCount(tree->left)+nodeCount(tree->right); 
  } 
} 
 
void MinHeap::add(Node *n, Node *tree) { 
  if (tree->left == NULL) { 
    tree->left = n; 
    n->parent = tree; 
    update(n->id,n->value); 
    return; 
  } 
  if (tree->right == NULL) { 
    tree->right = n; 
    n->parent = tree; 
    update(n->id,n->value); 
    return; 
  } 
  int leftCount = nodeCount(tree->left); 
  int rightCount = nodeCount(tree->right); 
  if (leftCount <= rightCount) { 
    add(n,tree->left); 
  } else { 
    add(n,tree->right); 
  } 
} 
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void MinHeap::swap(int id1, int id2) { 
  double temp = d_nodes[id1]->value; 
  d_nodes[id1]->value = d_nodes[id2]->value; 
  d_nodes[id2]->value = temp; 
  d_nodes[id1]->id = id2; 
  d_nodes[id2]->id = id1; 
  Node *n = d_nodes[id1]; 
  d_nodes[id1] = d_nodes[id2]; 
  d_nodes[id2] = n; 
} 
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Model.h 
 
#ifndef MODEL_H 
#define MODEL_H 
 
#include "Reaction.h" 
 
class Model { 
 public: 
  long *species; 
  Reaction *reactions; 
  int speciesCount; 
  int reactionCount; 
   
  Model(char *filename); 
  void output() const; 
  void printState(double currentTime) const; 
}; 
 
#endif 
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Model.cc 
 
#include <iostream> 
#include <fstream> 
#include "Model.h" 
 
using namespace std; 
 
Model::Model(char *filename) { 
  int i,j; 
  ifstream in; 
  in.open(filename); 
   
  in >> speciesCount; 
  species = new long[speciesCount]; 
  for(i=0; i<speciesCount; i++) { 
    in >> species[i]; 
  } 
 
  in >> reactionCount; 
  reactions = new Reaction[reactionCount]; 
  for(i=0; i<reactionCount; i++) { 
    Reaction *reaction = &reactions[i]; 
    in >> reaction->reactantCount; 
    reaction->reactants = new SpeciesUpdate[reaction->reactantCount]; 
    for(j=0; j<reaction->reactantCount; j++) { 
      SpeciesUpdate *reactant = &reaction->reactants[j]; 
      in >> reactant->coefficient; 
      in >> reactant->speciesIndex; 
      reactant->species = &species[reactant->speciesIndex]; 
    } 
    in >> reaction->productCount; 
    reaction->products = new SpeciesUpdate[reaction->productCount]; 
    for(j=0; j<reaction->productCount; j++) { 
      SpeciesUpdate *product = &reaction->products[j]; 
      in >> product->coefficient; 
      in >> product->speciesIndex; 
      product->species = &species[product->speciesIndex]; 
    } 
    in >> reaction->rate; 
  } 
} 
 
void Model::output() const { 
  int i; 
  for(i=0; i<speciesCount; i++) { 
    cout << "s" << i << ": " << species[i] << endl; 
  } 
  for(i=0; i<reactionCount; i++) { 
    reactions[i].output(); 
    cout << endl; 
  } 
} 
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void Model::printState(double currentTime) const { 
  cout << currentTime; 
  for(int i=0; i<speciesCount; i++) { 
    cout << " " << species[i]; 
  } 
  cout << endl; 
} 
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Next.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
#include "DependencyGraph.h" 
#include "MinHeap.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
  DependencyGraph dependencyGraph(model); 
  MinHeap minHeap; 
 
  double currentTime = 0.0; 
  double *propensities = new double[model.reactionCount]; 
  double *putativeTimes = new double[model.reactionCount]; 
  int selectedReaction; 
  int i; 
 
  for(i=0; i<model.reactionCount; i++) { 
    propensities[i] = model.reactions[i].getPropensity(); 
    putativeTimes[i] = random.getExponential()/propensities[i]; 
    minHeap.add(putativeTimes[i]); 
  } 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) { 
    selectedReaction = minHeap.getMin(); 
    model.reactions[selectedReaction].execute(); 
    currentTime = putativeTimes[selectedReaction]; 
    if (parameters.output) model.printState(currentTime); 
 
    IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
    for(i=0; i<dependencies->size(); i++) { 
      int index = dependencies->get(i); 
      double oldPropensity = propensities[index];  
      propensities[index] = model.reactions[index].getPropensity(); 
      if (index != selectedReaction) { 
 if (oldPropensity == 0.0) { 
   putativeTimes[index] = currentTime + 
random.getExponential()/propensities[index]; 
 } else { 
   putativeTimes[index] = currentTime + oldPropensity / 
propensities[index] * (putativeTimes[index] - currentTime); 
 } 
 minHeap.update(index,putativeTimes[index]); 
      } 
    }     
 
    putativeTimes[selectedReaction] = currentTime + 
random.getExponential()/propensities[selectedReaction]; 
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    minHeap.update(selectedReaction,putativeTimes[selectedReaction]); 
  } 
} 
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NextFPC.cc 
 
#include "Model.h" 
#include "Parameters.h" 
#include "Random.h" 
#include "DependencyGraph.h" 
#include "MinHeap.h" 
#include "FastPropensity.h" 
 
int main(int argc,char **argv) { 
  Parameters parameters(argc,argv); 
  Random random(parameters.seed); 
  Model model(parameters.filename); 
  DependencyGraph dependencyGraph(model); 
  MinHeap minHeap; 
 
  double *propensities = new double[model.reactionCount]; 
  FastPropensity fastPropensity(model,propensities,&dependencyGraph); 
  double *putativeTimes = new double[model.reactionCount]; 
  int selectedReaction; 
  int i; 
  double currentTime = 0.0; 
 
  for(i=0; i<model.reactionCount; i++) { 
    propensities[i] = model.reactions[i].getPropensity(); 
    putativeTimes[i] = random.getExponential()/propensities[i]; 
    minHeap.add(putativeTimes[i]); 
  } 
 
  if (parameters.output) model.printState(currentTime); 
  for( ; parameters.reactions > 0; parameters.reactions--) { 
    selectedReaction = minHeap.getMin(); 
    model.reactions[selectedReaction].execute(); 
    currentTime = putativeTimes[selectedReaction]; 
    if (parameters.output) model.printState(currentTime); 
 
    IntVector *dependencies = 
dependencyGraph.getDependencies(selectedReaction); 
    for(i=0; i<dependencies->size(); i++) { 
      int index = dependencies->get(i); 
      double oldPropensity = propensities[index];  
      fastPropensity.update(selectedReaction,i); 
      if (index != selectedReaction) { 
 if (oldPropensity == 0.0) { 
   putativeTimes[index] = currentTime + 
random.getExponential()/propensities[index]; 
 } else { 
   putativeTimes[index] = currentTime + oldPropensity / 
propensities[index] * (putativeTimes[index] - currentTime); 
 } 
 minHeap.update(index,putativeTimes[index]); 
      } 
    }     
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    putativeTimes[selectedReaction] = currentTime + 
random.getExponential()/propensities[selectedReaction]; 
    minHeap.update(selectedReaction,putativeTimes[selectedReaction]); 
  } 
} 
 



www.manaraa.com

 122

Parameters.h 
 
#ifndef PARAMETERS_H 
#define PARAMETERS_H 
 
class Parameters { 
 public: 
  bool output; 
  long reactions; 
  char *filename; 
  long seed; 
 
  Parameters(int argc, char **argv); 
  void printUsage(char *executableName); 
}; 
 
#endif 
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Parameters.cc 
 
#include "Parameters.h" 
#include <stdlib.h> 
#include <iostream> 
 
using namespace std; 
 
Parameters::Parameters(int argc, char **argv) { 
  output = false; 
  reactions = -1; 
  filename = NULL; 
  seed = 1; 
 
  for(int i=1; i<argc; i++) { 
    if (strcmp(argv[i],"-o") == 0) { 
      output = true; 
    } else if (strcmp(argv[i],"-i") == 0) { 
      filename = argv[++i]; 
    } else if (strcmp(argv[i],"-seed") == 0) { 
      seed = strtol(argv[++i],NULL,10); 
    } else if (strcmp(argv[i],"-rxns") == 0) { 
      reactions = strtol(argv[++i],NULL,10); 
    } else { 
      cout << "Invalid switch: " << argv[i] << endl; 
      printUsage(argv[0]); 
    } 
  } 
 
  if (filename == NULL) { 
    cout << "Input model not specified." << endl; 
    printUsage(argv[0]); 
  } 
 
  if (reactions == -1) { 
    cout << "Reaction count not specified." << endl; 
    printUsage(argv[0]); 
  } 
} 
 
void Parameters::printUsage(char *executableName) { 
  cout << "usage: " << executableName << " [-o] [-seed <seed>] -i 
<model> -rxns <reactionCount>" << endl;  
  exit(1); 
} 
 



www.manaraa.com

 124

PrintModel.cc 
 
#include "Model.h" 
#include <iostream> 
 
using namespace std; 
 
int main(int argc, char** argv) { 
  if (argc != 2) { 
    cout << "usage: PrintModel <filename>" << endl; 
  } 
  Model model(argv[1]); 
  model.output(); 
} 
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Random.h 
 
#ifndef RANDOM_H 
#define RANDOM_H 
 
class Random { 
 private: 
  unsigned long myrand; 
 
 public: 
  Random(long seed); 
  double getUniform(); 
  double getExponential(); 
}; 
 
#endif 
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Random.cc 
 
#include <math.h> 
#include "Random.h" 
 
Random::Random(long seed) { 
  myrand = (unsigned long)seed; 
} 
 
double Random::getUniform() { 
  myrand = myrand * 0x41c64e6d + 0x3039; 
  long temp = myrand & 0x7fffffff; 
  return (double)temp/2147483647.0; 
} 
 
double Random::getExponential() { 
  double temp = getUniform(); 
  while (temp == 0.0) { 
    temp = getUniform(); 
  } 
  return -log(temp); 
} 
 



www.manaraa.com

 127

Reaction.h 
 
#ifndef REACTION_H 
#define REACTION_H 
 
#include "SpeciesUpdate.h" 
 
class Reaction { 
 public: 
  int reactantCount; 
  int productCount; 
  SpeciesUpdate *reactants; 
  SpeciesUpdate *products; 
  double rate; 
 
  void output() const; 
  void execute(); 
  double getPropensity() const; 
  int getDelta(int speciesIndex) const; 
}; 
 
#endif 
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Reaction.cc 
 
#include <iostream> 
#include "Reaction.h" 
 
using namespace std; 
 
void Reaction::output() const { 
  int i; 
 
  for(i=0; i<reactantCount; i++) { 
    if (i != 0) { 
      cout << " + "; 
    } 
    reactants[i].output(); 
  } 
  cout << " => "; 
  if (productCount == 0) { 
    cout << "*" << endl; 
  } else { 
    for(i=0; i<productCount; i++) { 
      if (i != 0) { 
 cout << " + "; 
      }   
      products[i].output(); 
    } 
  } 
 
  cout << "  " << rate; 
} 
 
void Reaction::execute() { 
  int i; 
  for(i=0; i<reactantCount; i++) { 
    *reactants[i].species -= reactants[i].coefficient; 
  } 
  for(i=0; i<productCount; i++) { 
    *products[i].species += products[i].coefficient; 
  } 
} 
 
double Reaction::getPropensity() const { 
  int i,j; 
  double propensity = rate; 
  for(i=0; i<reactantCount; i++) { 
    for(j=0; j<reactants[i].coefficient; j++) { 
      propensity *= (double)(*reactants[i].species-j); 
    } 
    for(j=2; j<=reactants[i].coefficient; j++) { 
      propensity /= (double)j; 
    } 
  } 
  return propensity; 
} 



www.manaraa.com

 129

 
int Reaction::getDelta(int speciesIndex) const { 
  int delta = 0; 
 
  for(int i=0; i<reactantCount; i++) { 
    if (reactants[i].speciesIndex == speciesIndex) { 
      delta -= reactants[i].coefficient; 
    } 
  } 
  for(int i=0; i<productCount; i++) { 
    if (products[i].speciesIndex == speciesIndex) { 
      delta += products[i].coefficient; 
    } 
  } 
 
  return delta; 
} 
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SpeciesUpdate.h 
 
#ifndef SPECIESUPDATE_H 
#define SPECIESUPDATE_H 
 
class SpeciesUpdate { 
 public: 
  int coefficient; 
  int speciesIndex; 
  long *species; 
 
  void output(); 
}; 
 
#endif 
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SpeciesUpdate.cc 
 
#include <iostream> 
#include "SpeciesUpdate.h" 
 
using namespace std; 
 
void SpeciesUpdate::output() { 
  if (coefficient != 1) { 
    cout << coefficient << " "; 
  } 
  cout << "s" << speciesIndex; 
} 
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SumTree.h 
 
class Node { 
 public: 
  Node *leftChild; 
  Node *rightChild; 
  Node *parent; 
  double value; 
  int id; 
}; 
 
class SumTree { 
public: 
  SumTree(int size); 
  void update(int id, double value); 
  void print(); 
  double getSum(); 
  int selectReaction(double rand); 
   
private: 
  Node *root; 
  Node **leafNodes; 
  int leafNodeCount; 
  int getNodeCount(Node *node); 
  int getLeafNodeCount(Node *node); 
  void assignNodeNumbers(Node *node); 
  void updateHelper(Node *node); 
  void add(); 
  Node *addHelper(Node *node); 
  void printHelper(Node *node); 
  Node *initNode(); 
  int selectReactionHelper(double rand, Node *node); 
}; 
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SumTree.cc 
 
#include <iostream> 
#include "SumTree.h" 
 
using namespace std; 
 
SumTree::SumTree(int size) { 
  root = NULL; 
  while(getLeafNodeCount(root) < size) { 
    add(); 
  } 
  leafNodes = new (Node *)[size]; 
  leafNodeCount = 0; 
  assignNodeNumbers(root); 
} 
 
void SumTree::assignNodeNumbers(Node *node) { 
  if (node == NULL) { 
    return; 
  } else if ((node->leftChild == NULL) && (node->rightChild == NULL)) { 
    leafNodes[leafNodeCount] = node; 
    node->id = leafNodeCount; 
    leafNodeCount++; 
  } else { 
    assignNodeNumbers(node->leftChild); 
    assignNodeNumbers(node->rightChild); 
  } 
} 
 
int SumTree::getNodeCount(Node *node) { 
  if (node == NULL) { 
    return 0; 
  } else { 
    return 1 + getNodeCount(node->leftChild) + getNodeCount(node-
>rightChild); 
  } 
} 
 
int SumTree::getLeafNodeCount(Node *node) { 
  if (node == NULL) { 
    return 0; 
  } else if ((node->leftChild == NULL) && (node->rightChild == NULL)) { 
    return 1; 
  } else { 
    return getLeafNodeCount(node->leftChild) + getLeafNodeCount(node-
>rightChild); 
  } 
} 
 
Node *SumTree::initNode() { 
  Node *node = new Node(); 
  node->leftChild = NULL; 
  node->rightChild = NULL; 
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  node->parent = NULL; 
  node->value = 0.0; 
  node->id = -1; 
  return node; 
} 
 
void SumTree::add() { 
  if (root == NULL) { 
    root = initNode(); 
  } else { 
    Node *parent = addHelper(root); 
    Node *n1 = initNode(); 
    Node *n2 = initNode(); 
    n1->parent = parent; 
    n2->parent = parent; 
    parent->leftChild = n1; 
    parent->rightChild = n2; 
  } 
} 
 
Node *SumTree::addHelper(Node *node) { 
  if ((node->leftChild == NULL) || (node->rightChild == NULL)){ 
    return node; 
  } else if (getNodeCount(node->leftChild) == getNodeCount(node-
>rightChild)) { 
    return addHelper(node->leftChild); 
  } else { 
    return addHelper(node->rightChild); 
  } 
} 
 
void SumTree::update(int id, double value) { 
  leafNodes[id]->value = value; 
  updateHelper(leafNodes[id]->parent); 
} 
 
void SumTree::updateHelper(Node *node) { 
  if (node == NULL) { 
    return; 
  } else { 
    node->value = node->leftChild->value + node->rightChild->value; 
    updateHelper(node->parent); 
  } 
} 
 
void SumTree::print() { 
  printHelper(root); 
  cout << endl; 
} 
 
void SumTree::printHelper(Node *node) { 
  if (node == NULL) { 
    cout << "-"; 
  } else { 
    if ((node->leftChild == NULL) && (node->rightChild == NULL)) { 
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      cout << node->value; 
    } else { 
      cout << node->value << "("; 
      printHelper(node->leftChild); 
      cout << ",";   
      printHelper(node->rightChild); 
      cout << ")"; 
    } 
  } 
} 
 
double SumTree::getSum() { 
  return root->value; 
} 
 
int SumTree::selectReaction(double rand) { 
  return selectReactionHelper(rand,root); 
} 
 
int SumTree::selectReactionHelper(double rand, Node *node) { 
  if (node->id != -1) { 
    return node->id; 
  } else { 
    if (rand < node->leftChild->value) { 
      return selectReactionHelper(rand,node->leftChild); 
    } else { 
      return selectReactionHelper(rand - node->leftChild->value,node-
>rightChild); 
    } 
  } 
} 
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Appendix B – Performance Analysis Source Code 
 

The following pages include the source code used to generate models and 

measure the execution times of the simulators. 
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ModelGen.java 
 
import java.io.*; 
import java.util.*; 
 
class ModelGen { 
    public static void generateModel(int speciesCount, 
         int factor, 
         String filename) throws IOException { 
 PrintStream out = new PrintStream(new 
FileOutputStream(filename)); 
 out.println(speciesCount); 
 for(int i=0; i<speciesCount; i++) { 
     if (i != 0) out.print(" "); 
     out.print("100"); 
 } 
 out.println(); 
  
 out.println(speciesCount*factor); 
 for(int i=0; i<speciesCount; i++) { 
     for(int j=0; j<factor; j++) { 
  out.println("1 1 " + i + " 1 1 " + ((i+1)%speciesCount) + " 
1.0"); 
     } 
 } 
 out.close(); 
    } 
     
    public static void main(String args[]) throws IOException { 
 for(int modelsize=12; modelsize<=12*50; modelsize+=12) { 
     generateModel(modelsize,1,"" + modelsize + "_1.in"); 
     generateModel(modelsize/2,2,"" + modelsize + "_2.in"); 
     generateModel(modelsize/3,3,"" + modelsize + "_3.in"); 
     generateModel(modelsize/4,4,"" + modelsize + "_4.in"); 
 } 
    } 
} 
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Performance.java 
 
import java.io.*; 
import java.util.*; 
 
class Performance { 
    public static void print(String s) { 
 System.out.println(s); 
 System.err.println(s); 
    } 
 
    public static void main(String args[])  

throws Exception { 
 String executable = args[0]; 
 print("File\tSize\tFactor\tRxns\tTime"); 
 
 for(int j=1; j<=4; j++) { 
       for(int i=12; i<=12*50; i+=12) { 
  String filename = "models/" + i + "_" + j + ".in"; 
  long totalReactions = 5000000; 
  long t1 = Calendar.getInstance().getTimeInMillis(); 
  Process p2 = Runtime.getRuntime().exec("./" + executable + 
" -i " + filename + " -rxns " + totalReactions); 
  p2.waitFor(); 
  long t2 = Calendar.getInstance().getTimeInMillis(); 
  print(filename + "\t" + i + "\t" + j + "\t" + 
totalReactions + "\t" + ((t2-t1)/1000.0)); 
     } 
 } 
    } 
} 
 
 



www.manaraa.com

 139

Appendix C – Test Models 
 

The following pages include SBML code for the real biological models used for 

performance analysis. 



www.manaraa.com

 140

Model: DIMER 

8 
1 1 0 0 0 0 0 0 
13 
1 1 0 2 1 0 1 2 0.01 
1 1 2 0 6e-3 
1 1 2 2 1 2 1 4 3e-2 
1 1 4 0 4e-4 
2 1 6 1 1 1 1 7 0.0016 
1 1 7 2 1 1 1 6 0.2 
1 1 1 2 1 1 1 3 0.002 
1 1 7 2 1 7 1 3 0.1 
1 1 3 0 6e-3 
1 1 3 2 1 3 1 5 3e-2 
1 1 5 0 4e-4 
1 2 4 1 1 6 0.016 
1 1 6 1 2 4 1 
8 
0 1 2 3 4 5 6 7  
 
 

 

 



www.manaraa.com

 141

Model: ENG 

32 
0 130 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
49 
1 1 3 2 1 3 1 4 .01 
1 1 4 0 .012 
1 1 4 2 1 4 1 1 .1 
1 1 1 0 .0006 
2 1 1 1 0 1 1 2 .000001 
1 1 2 2 1 1 1 0 .01 
1 1 6 4 1 6 1 7 1 8 1 29 .3 
1 1 7 0 .012 
1 1 8 0 .012 
1 1 7 2 1 7 1 9 .1 
1 1 8 2 1 8 1 10 .1 
1 1 9 0 0.0006 
1 1 10 0 0.0006 
2 1 9 1 10 1 1 11 .01 
1 1 11 2 1 9 1 10 .01 
1 1 11 0 0.0006 
1 1 0 0 0.0005 
1 1 12 2 1 12 1 0 .2 
2 1 12 1 0 1 1 13 0.0000005 
1 1 13 2 1 12 1 0 .00004 
1 1 31 2 1 15 1 31 .08 
1 1 15 0 .012 
1 1 15 2 1 15 1 16 .1 
1 1 16 0 0.0006 
2 1 16 1 18 1 1 27 .005 
1 1 27 2 1 18 1 16 1 
1 1 27 2 1 27 1 20 .08 
1 1 20 0 .012 
1 1 20 2 1 20 1 22 .1 
1 1 22 0 0.0006 
1 1 17 2 1 17 1 19 0.02 
1 1 19 0 0.012 
1 1 19 2 1 19 1 21 .1 
1 1 21 0 0.0006 
1 1 22 2 1 22 1 23 85 
1 1 23 1 1 26 .1 
1 1 26 1 1 23 .00001 
2 1 23 1 21 1 1 24 .001 
1 1 24 2 1 21 1 23 .3636 
1 2 24 1 1 25 .2 
1 1 25 1 2 24 .433 
2 1 25 1 28 1 1 6 .1 
1 1 6 2 1 25 1 28 4 
1 1 29 0 0.012 
1 1 29 2 1 29 1 30 .03 
1 1 30 0 0.0006 
2 1 30 1 23 1 1 30 5 
2 1 2 1 14 1 1 31 0.06 
1 1 31 2 1 2 1 14 10 
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11 
0 1 2 11 16 21 22 23 26 28 30  
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Model: QS8 

122 
1 16000000 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
201 
1 1 0 1 2 0 .0001194 
1 1 2 2 1 2 1 3 5.55e-3 
1 1 3 0 2.78e-5 
1 2 3 1 1 4 .00003 
1 1 4 1 2 3 .01 
1 2 4 1 1 5 .0006 
1 1 5 1 2 4 .01 
2 1 6 1 5 1 1 7 .02 
1 1 7 2 1 6 1 5 .01 
1 1 7 2 1 7 1 8 0.06 
1 1 8 0 .006 
1 1 8 2 1 8 1 9 .03 
1 1 9 0 0.0006 
1 1 1 1 1 10 4.7e-7 
1 1 10 1 1 1 0.8 
2 1 9 1 10 1 1 11 0.001 
1 1 11 2 1 9 1 10 0.3636 
1 2 11 1 1 12 0.02 
1 1 12 1 2 11 0.433 
2 1 12 1 13 1 1 14 0.1 
1 1 14 2 1 12 1 13 4 
1 1 14 2 1 14 1 15 0.3 
1 1 15 0 0.006 
1 1 15 2 1 15 1 16 0.03 
1 1 16 0 0.0006 
2 1 16 1 0 3 1 0 1 16 1 1 0.006 
1 1 17 2 1 17 1 18 5.55e-3 
1 1 18 0 2.78e-5 
1 2 18 1 1 19 .00003 
1 1 19 1 2 18 .01 
1 2 19 1 1 20 .0006 
1 1 20 1 2 19 .01 
2 1 21 1 20 1 1 22 .02 
1 1 22 2 1 21 1 20 .01 
1 1 22 2 1 22 1 23 0.06 
1 1 23 0 .006 
1 1 23 2 1 23 1 24 .03 
1 1 24 0 0.0006 
1 1 1 1 1 25 4.7e-7 
1 1 25 1 1 1 0.8 
2 1 24 1 25 1 1 26 0.001 
1 1 26 2 1 24 1 25 0.3636 
1 2 26 1 1 27 0.02 
1 1 27 1 2 26 0.433 
2 1 27 1 28 1 1 29 0.1 
1 1 29 2 1 27 1 28 4 
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1 1 29 2 1 29 1 30 0.3 
1 1 30 0 0.006 
1 1 30 2 1 30 1 31 0.03 
1 1 31 0 0.0006 
2 1 31 1 0 3 1 0 1 31 1 1 0.006 
1 1 32 2 1 32 1 33 5.55e-3 
1 1 33 0 2.78e-5 
1 2 33 1 1 34 .00003 
1 1 34 1 2 33 .01 
1 2 34 1 1 35 .0006 
1 1 35 1 2 34 .01 
2 1 36 1 35 1 1 37 .02 
1 1 37 2 1 36 1 35 .01 
1 1 37 2 1 37 1 38 0.06 
1 1 38 0 .006 
1 1 38 2 1 38 1 39 .03 
1 1 39 0 0.0006 
1 1 1 1 1 40 4.7e-7 
1 1 40 1 1 1 0.8 
2 1 39 1 40 1 1 41 0.001 
1 1 41 2 1 39 1 40 0.3636 
1 2 41 1 1 42 0.02 
1 1 42 1 2 41 0.433 
2 1 42 1 43 1 1 44 0.1 
1 1 44 2 1 42 1 43 4 
1 1 44 2 1 44 1 45 0.3 
1 1 45 0 0.006 
1 1 45 2 1 45 1 46 0.03 
1 1 46 0 0.0006 
2 1 46 1 0 3 1 0 1 46 1 1 0.006 
1 1 47 2 1 47 1 48 5.55e-3 
1 1 48 0 2.78e-5 
1 2 48 1 1 49 .00003 
1 1 49 1 2 48 .01 
1 2 49 1 1 50 .0006 
1 1 50 1 2 49 .01 
2 1 51 1 50 1 1 52 .02 
1 1 52 2 1 51 1 50 .01 
1 1 52 2 1 52 1 53 0.06 
1 1 53 0 .006 
1 1 53 2 1 53 1 54 .03 
1 1 54 0 0.0006 
1 1 1 1 1 55 4.7e-7 
1 1 55 1 1 1 0.8 
2 1 54 1 55 1 1 56 0.001 
1 1 56 2 1 54 1 55 0.3636 
1 2 56 1 1 57 0.02 
1 1 57 1 2 56 0.433 
2 1 57 1 58 1 1 59 0.1 
1 1 59 2 1 57 1 58 4 
1 1 59 2 1 59 1 60 0.3 
1 1 60 0 0.006 
1 1 60 2 1 60 1 61 0.03 
1 1 61 0 0.0006 
2 1 61 1 0 3 1 0 1 61 1 1 0.006 
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1 1 62 2 1 62 1 63 5.55e-3 
1 1 63 0 2.78e-5 
1 2 63 1 1 64 .00003 
1 1 64 1 2 63 .01 
1 2 64 1 1 65 .0006 
1 1 65 1 2 64 .01 
2 1 66 1 65 1 1 67 .02 
1 1 67 2 1 66 1 65 .01 
1 1 67 2 1 67 1 68 0.06 
1 1 68 0 .006 
1 1 68 2 1 68 1 69 .03 
1 1 69 0 0.0006 
1 1 1 1 1 70 4.7e-7 
1 1 70 1 1 1 0.8 
2 1 69 1 70 1 1 71 0.001 
1 1 71 2 1 69 1 70 0.3636 
1 2 71 1 1 72 0.02 
1 1 72 1 2 71 0.433 
2 1 72 1 73 1 1 74 0.1 
1 1 74 2 1 72 1 73 4 
1 1 74 2 1 74 1 75 0.3 
1 1 75 0 0.006 
1 1 75 2 1 75 1 76 0.03 
1 1 76 0 0.0006 
2 1 76 1 0 3 1 0 1 76 1 1 0.006 
1 1 77 2 1 77 1 78 5.55e-3 
1 1 78 0 2.78e-5 
1 2 78 1 1 79 .00003 
1 1 79 1 2 78 .01 
1 2 79 1 1 80 .0006 
1 1 80 1 2 79 .01 
2 1 81 1 80 1 1 82 .02 
1 1 82 2 1 81 1 80 .01 
1 1 82 2 1 82 1 83 0.06 
1 1 83 0 .006 
1 1 83 2 1 83 1 84 .03 
1 1 84 0 0.0006 
1 1 1 1 1 85 4.7e-7 
1 1 85 1 1 1 0.8 
2 1 84 1 85 1 1 86 0.001 
1 1 86 2 1 84 1 85 0.3636 
1 2 86 1 1 87 0.02 
1 1 87 1 2 86 0.433 
2 1 87 1 88 1 1 89 0.1 
1 1 89 2 1 87 1 88 4 
1 1 89 2 1 89 1 90 0.3 
1 1 90 0 0.006 
1 1 90 2 1 90 1 91 0.03 
1 1 91 0 0.0006 
2 1 91 1 0 3 1 0 1 91 1 1 0.006 
1 1 92 2 1 92 1 93 5.55e-3 
1 1 93 0 2.78e-5 
1 2 93 1 1 94 .00003 
1 1 94 1 2 93 .01 
1 2 94 1 1 95 .0006 
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1 1 95 1 2 94 .01 
2 1 96 1 95 1 1 97 .02 
1 1 97 2 1 96 1 95 .01 
1 1 97 2 1 97 1 98 0.06 
1 1 98 0 .006 
1 1 98 2 1 98 1 99 .03 
1 1 99 0 0.0006 
1 1 1 1 1 100 4.7e-7 
1 1 100 1 1 1 0.8 
2 1 99 1 100 1 1 101 0.001 
1 1 101 2 1 99 1 100 0.3636 
1 2 101 1 1 102 0.02 
1 1 102 1 2 101 0.433 
2 1 102 1 103 1 1 104 0.1 
1 1 104 2 1 102 1 103 4 
1 1 104 2 1 104 1 105 0.3 
1 1 105 0 0.006 
1 1 105 2 1 105 1 106 0.03 
1 1 106 0 0.0006 
2 1 106 1 0 3 1 0 1 106 1 1 0.006 
1 1 107 2 1 107 1 108 5.55e-3 
1 1 108 0 2.78e-5 
1 2 108 1 1 109 .00003 
1 1 109 1 2 108 .01 
1 2 109 1 1 110 .0006 
1 1 110 1 2 109 .01 
2 1 111 1 110 1 1 112 .02 
1 1 112 2 1 111 1 110 .01 
1 1 112 2 1 112 1 113 0.06 
1 1 113 0 .006 
1 1 113 2 1 113 1 114 .03 
1 1 114 0 0.0006 
1 1 1 1 1 115 4.7e-7 
1 1 115 1 1 1 0.8 
2 1 114 1 115 1 1 116 0.001 
1 1 116 2 1 114 1 115 0.3636 
1 2 116 1 1 117 0.02 
1 1 117 1 2 116 0.433 
2 1 117 1 118 1 1 119 0.1 
1 1 119 2 1 117 1 118 4 
1 1 119 2 1 119 1 120 0.3 
1 1 120 0 0.006 
1 1 120 2 1 120 1 121 0.03 
1 1 121 0 0.0006 
2 1 121 1 0 3 1 0 1 121 1 1 0.006 
17 
1 8 15 23 30 38 45 53 60 68 75 83 90 98 105 113 120  
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Model: TB 

17 
10 0 0 10 0 0 10 20 0 0 0 0 0 0 1 0 1 
23 
1 1 16 2 1 0 1 16 10 
2 1 0 1 3 2 1 3 1 1 16 
2 1 0 1 4 2 1 4 1 1 32 
2 1 0 1 5 2 1 5 1 1 16 
2 1 1 1 3 2 1 3 1 2 0.6 
2 1 1 1 4 2 1 4 1 2 0.6 
2 1 1 1 5 2 1 5 1 2 0.78 
1 1 2 0 4 
1 1 3 1 1 4 100 
1 1 4 1 1 3 1 
1 1 4 1 1 5 0.5 
1 1 5 1 1 4 10 
2 1 6 1 7 1 1 8 1 
1 2 1 1 1 13 10 
1 1 13 1 2 1 10 
2 1 13 1 14 1 1 15 5 
1 1 15 2 1 13 1 14 10 
2 1 15 1 9 2 1 8 1 15 10 
1 1 8 1 1 9 10 
1 1 9 1 1 10 4 
1 1 10 1 1 11 6 
1 1 11 3 1 12 1 6 1 7 1 
1 1 12 0 100 
17 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
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