
www.manaraa.com

University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2004

Accelerating Exact Stochastic Simulation Accelerating Exact Stochastic Simulation

James Michael McCollum
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
McCollum, James Michael, "Accelerating Exact Stochastic Simulation. " Master's Thesis, University of
Tennessee, 2004.
https://trace.tennessee.edu/utk_gradthes/2367

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

www.manaraa.com

To the Graduate Council:

I am submitting herewith a thesis written by James Michael McCollum entitled "Accelerating

Exact Stochastic Simulation." I have examined the final electronic copy of this thesis for form

and content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science, with a major in Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Donald W. Bouldin, Chirs D. Cox

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

www.manaraa.com

To the Graduate Council:

I am submitting herewith a thesis written by James Michael McCollum entitled
“Accelerating Exact Stochastic Simulation.” I have examined the final electronic copy of
this thesis for form and content and recommend that it be accepted in partial fulfillment
of the requirements for the degree Master of Science, with a major in Electrical
Engineering.

 Gregory D. Peterson

 Major Professor

We have read this thesis
and recommend its acceptance:

Donald W. Bouldin

Chris D. Cox

 Accepted for the Council:

 Anne Mayhew

 Vice Chancellor and Dean of Graduate Studies

(Original Signatures are on file with official student records.)

www.manaraa.com

Accelerating Exact Stochastic Simulation

A Thesis
Presented for the
Master of Science

Degree
The University of Tennessee, Knoxville

James Michael McCollum
May 2004

www.manaraa.com

 ii

DEDICATION

This thesis is dedicated to my wife, Sarah, for her love;

my parents, Greg and Michelle, and my brother, Nathan,

for their support, guidance, and encouragement;

and to my grandfather, James,

the first electrical engineer in my family.

www.manaraa.com

 iii

ACKNOWLEDGEMENTS

 I wish to thank all of the people who helped me complete my Master of Science

degree in Electrical Engineering, primarily my advisor, mentor, and friend, Dr. Peterson.

I also wish to thank Dr. Cox and Dr. Simpson for introducing me to the field of

microbiology and Dr. Bouldin for guiding my work in VLSI design.

 I would also like to thank all of the organizations that supported this work,

including the National Science Foundation via grants #0075792, #0130843, #0311500,

and #9972889, the Defense Advanced Research Projects Agency BioComputation

program, the University of Tennessee Center for Environmental Biotechnology, and the

University of Tennessee Center for Information Technology Research.

www.manaraa.com

 iv

ABSTRACT

 Currently, the applicability of computer modeling to whole-cell and multi-cell

biochemical models is limited by the accuracy and efficiency of the simulation tools used

to model gene regulatory networks. It is widely accepted that exact stochastic simulation

algorithms, originally developed by Gillespie and improved by Gibson and Bruck,

accurately depict the time-evolution of a spatially homogeneous biochemical model, but

these algorithms are often abandoned by modelers because their execution time can be on

the order of days to months. Other modeling techniques exist that simulate models much

more quickly, such as approximate stochastic simulation and differential equations

modeling, but these techniques can be inaccurate for biochemical models with small

populations of chemical species. This work analyzes the performance of exact stochastic

simulation algorithms by developing software implementations of exact stochastic

simulation algorithms and measuring their performance for a wide variety of models.

Through this study, several techniques are developed and tested that improve the

performance of certain algorithms for specific models. A new algorithm called the

Adaptive Method is then presented which attempts to select the optimal simulation

algorithm for the particular model based on periodic measurements of simulator

performance during execution. Other algorithmic changes are proposed to aid in the

development of hardware accelerators for exact stochastic simulation. The work serves

as another step in the process of making exact stochastic simulation a practical modeling

solution for molecular biologists.

www.manaraa.com

 v

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

2. GENE REGULATORY NETWORKS 4

 2.1. What are cells? 4

 2.2. What are proteins? 5

 2.3. How do cells use proteins? 7

 2.4. How do cells produce proteins? 10

 2.5. What are gene regulatory networks? 12

 2.6. Example 13

 2.7. Why model gene regulatory networks? 16

 2.8. Conclusion 18

3. MODELING GENE REGULATORY NETWORKS 19

 3.1. Molecular Dynamics Simulation 19

 3.2. Ordinary Differential Equations Modeling 20

 3.3. Gillespie’s First Reaction Method 23

 3.4. Gillespie’s Direct Method 26

 3.5. The Dependency Graph 28

 3.6. Gibson and Bruck’s Next Reaction Method 29

 3.7. Gibson and Bruck’s Efficient Direct Method 33

 3.8. Other Techniques 35

 3.9. Conclusion 35

4. ANALYZING EXACT STOCHASTIC SIMULATION 37

www.manaraa.com

 vi

 4.1. Creating a Model Set 37

 4.2. The First Reaction Method 40

 4.3. The Direct Method 42

 4.4. The Efficient Direct Method 46

 4.5. The Next Reaction Method 46

 4.6. Conclusion 50

5. THE ADAPTIVE METHOD 53

 5.1. Next vs. DirectDG2 53

 5.2. The Adaptive Method 57

 5.3. Performance Analysis 62

 5.4. Implications 67

 5.5. Applying the Adaptive Method to Real Models 67

 5.6. Conclusion 68

6. FAST PROPENSITY CALCULATION 71

 6.1. Propensity Calculation 71

 6.2. Fast Propensity Calculation 73

 6.3. Implementation Details 77

 6.4. Performance Analysis 78

 6.5. Implications 81

 6.6. Conclusion 81

7. CONCLUSIONS AND FUTURE WORK 82

REFERENCES 85

APPENDICES 88

www.manaraa.com

 vii

 A. Simulator Source Code 89

 B. Performance Analysis Source Code 136

 C. Test Models 139

VITA 148

www.manaraa.com

 viii

 LIST OF FIGURES

Figure Page

2-1. Chemical Structure of an Amino Acid 6

2-2. Chemical Structure of Alanine 8

2-3. Chemical Structure of Tyrosine 8

2-4. Chemical Structure of a Protein 9

2-5. Chemical Structure of DNA 11

2-6. Quorum Sensing in Vibrio fischeri 15

3-1. Sample Biochemical Network 21

3-2. Gillespie’s First Reaction Method 24

3-3. Gillespie’s Direct Method 27

3-4. Example Adjacency Matrix 30

3-5. Gibson and Bruck’s Next Reaction Method 31

3-5. Gibson and Bruck’s Efficient Direct Method 34

4-1. First Execution Times 41

4-2. First vs. FirstDG (Update Factor = 8) 43

4-3. Direct Execution Times 43

4-4. Direct vs. First and FirstDG (Update Factor = 2) 44

4-5. Direct vs. First and FirstDG (Update Factor = 8) 44

4-6. DirectDG vs. Direct (Update Factor = 8) 45

4-7. DirectDG2 vs. DirectDG (Update Factor = 8) 47

4-8. EfficientDirect Execution Times 47

4-9. EfficientDirect vs. DirectDG2 (Update Factor = 2) 48

www.manaraa.com

 ix

4-10. EfficientDirect vs. DirectDG2 (Update Factor = 8) 48

4-11. Next Execution Times 49

4-12. Next vs. EfficientDirect (Update Factor = 2) 51

4-13. Next vs. EfficientDirect (Update Factor = 8) 51

4-14. Next vs. DirectDG2 (Update Factor = 2) 52

4-15. Next vs. DirectDG2 (Update Factor = 8) 52

5-1. Next vs. DirectDG2 (Update Factor = 2) 54

5-2. Next vs. DirectDG2 (Update Factor = 4) 54

5-3. Next vs. DirectDG2 (Update Factor = 6) 55

5-4. Next vs. DirectDG2 (Update Factor = 8) 55

5-5. Intersection of Execution Time Curves for DirectDG2 vs. Next 56

5-6. Summary of the Adaptive Method 58

5-7. The Adaptive Method 59

5-8. Adaptive Method vs. DirectDG2 and Next (Update Factor = 2) 63

5-9. Adaptive Method vs. DirectDG2 and Next (Update Factor = 4) 63

5-10. Adaptive Method vs. DirectDG2 and Next (Update Factor = 6) 64

5-11. Adaptive Method vs. DirectDG2 and Next (Update Factor = 8) 64

5-12. Windows - Adaptive Method vs. DirectDG2 and Next (UF = 2) 65

5-13. Windows - Adaptive Method vs. DirectDG2 and Next (UF = 4) 65

5-14. Windows - Adaptive Method vs. DirectDG2 and Next (UF = 6) 66

5-15. Windows - Adaptive Method vs. DirectDG2 and Next (UF = 8) 66

5-16. Real Model Execution Times 69

6-1. Execution Times for Next and NextFPC (Update Factor = 6) 79

www.manaraa.com

 x

6-2. Execution Times for DirectDG2 and DirectFPC (UF = 6) 79

6-3. Speedup for DirectDG2 vs DirectFPC (Update Factor = 6) 80

6-4. Speedup for NextFPC vs. Next (Update Factor = 6) 80

www.manaraa.com

 1

Chapter 1

Introduction

 Computer modeling has forever changed the field of integrated circuit design.

Every analog and digital circuit designed today is first built on a virtual workbench,

where a schematic diagram or textual description of the circuit is captured in a software

tool and the time evolution of the circuit’s output based on varying stimuli is estimated

using a program such as SPICE (Simulation Program with Integrated Circuit Emphasis)

[1]. Modeling allows the engineer to sweep parameters quickly, optimize the design,

analyze tradeoffs, and verify that the design meets specifications. Without these tools, it

would be impossible to design circuits that meet today’s size, complexity, and

performance requirements.

 A similar revolution may soon take place in the field of molecular biology. New

biochemical analysis techniques like the use of micro-arrays have led to an explosion in

the amount of data biologists can gather about the internal state of a cell [2]. Using this

information, biologists can begin to analyze and understand gene regulatory networks,

the complex interactions between proteins and genes that control cell functions. If

accurate computer models of these gene regulatory networks could be developed,

biologists could begin working in a virtual laboratory, and thus save time and money.

 Unfortunately, several roadblocks prevent the development of gene regulatory

network models. One of the most fundamental problems is the tradeoff between

efficiency and accuracy in gene regulatory network simulation algorithms. Some

modelers have used boolean networks, Bayesian statistics, and differential equations to

www.manaraa.com

 2

model gene regulatory networks [3]. These techniques have fast simulation times (less

than a day for biologically relevant problems), but can produce inadequate or inaccurate

results because they fail to accurately model the noise of a biochemical process and they

are not accurate for models with small species populations. Others modelers have used

molecular dynamics models and exact stochastic simulation, which are believed to

accurately predict the time-evolution of a biochemical system and properly model noise,

but can have execution times on the order of months and years for single whole-cell

models [4].

 In an attempt to improve the performance of gene regulatory network simulation,

this work focuses on analyzing and improving the performance of exact stochastic

simulation algorithms, specifically the First Reaction Method and Direct Method

developed by Gillespie [5] and the Next Reaction Method developed by Gibson and

Bruck [6]. Through this analysis, techniques are discovered that improve the

performance of these various algorithms for a specific set of models. An algorithm is

then developed called the Adaptive Method that combines these enhancements and

attempts to select the optimal algorithm for simulating the particular model by monitoring

the performance of the simulator as the simulation progresses.

 Additionally, a technique called Fast Propensity Calculation is suggested for

reducing several of the multiplication steps involved in exact stochastic simulation to

addition steps. After analyzing the performance of this technique in a software

implementation of the algorithm, no significant performance gain is shown, but this work

does have implications for creating efficient hardware accelerators for exact stochastic

simulation.

www.manaraa.com

 3

 The second chapter of this work is intended to provide the reader with a basic

introduction to molecular biology and gene regulatory networks. Chapter three

introduces existing techniques for modeling gene regulatory networks, focusing in detail

on the exact stochastic simulation algorithms developed by Gillespie. The fourth chapter

discusses the results of performing rigorous analysis on exact stochastic simulation

algorithms by running a large set of input models. The fifth chapter introduces and

analyzes the Adaptive Method, a new algorithm that matches or outperforms existing

stochastic simulation algorithms. The final chapter introduces and analyses the

performance of Fast Propensity Calculation.

 As a whole, this work provides several new insights into exact stochastic

simulation of gene regulatory networks and will hopefully serve as another step in the

development of a virtual laboratory for molecular biologists.

www.manaraa.com

 4

Chapter 2

Gene Regulatory Networks

 The goal of this chapter is to provide the reader with a basic understanding of

gene regulatory networks and their importance to the life of a cell. To sufficiently

introduce this topic, we must first discuss several concepts fundamental to molecular

biology and genetics, such as:

 - What are cells?

 - What are proteins?

 - How do cells use proteins?

 - How do cells produce proteins?

After these topics are introduced, a detailed definition of gene regulatory networks is

provided along with several illustrative examples. By gaining an appreciation for the

importance of gene regulatory networks, we can then begin to discuss the importance of

modeling them accurately. For a more detailed introduction to gene regulatory networks

and molecular biology, readers are encouraged to consult [7,8,9].

2.1 What are cells?

 Cells are the basic building blocks of life. Microorganisms like bacteria, fungi,

protozoa, and algae are comprised of a single cell functioning as an individual entity.

Multicellular organisms like plants and animals are comprised of millions of cells

working together for the common good of the organism.

www.manaraa.com

 5

The simplest organisms, called prokaryotes, consist of a single cell containing one

strand of deoxyribonucleic acid (DNA) and a cell wall or membrane that separates the

organism from its environment. Through this membrane, the cell constantly interacts

with its environment, absorbing nutrients and discarding waste products. DNA is a chain

of nucleic acids that contains instructions that control the behavior and reproduction of

the cell. DNA will be discussed in more detail later in this chapter.

Organisms with more complex cellular structure are called eukaryotes.

Eukaryotes have a cell wall or membrane, one or multiple strands of DNA, and individual

structures called organelles that perform specific cell functions. Examples of cell

organelles include nuclei which isolate the DNA from the rest of the cell, mitochondria

which are used for energy generation, and chloroplasts which are used in photosynthesis

(the conversion of light energy into chemical energy).

 Yeast and algae are examples of single-celled eukaryotes, while bacteria are

single-celled prokaryotes. Multi-cellular organisms like plants and animals are

comprised of the more complex eukaryotic cells.

2.2 What are proteins?

 To define the term protein, we must first discuss amino acids, the molecules that

chain together to form proteins. Amino acids are a group of molecules that are

characterized by a central carbon atom (C) connected to a hydrogen atom (H), an amino

group (NH2), a carboxyl group (COOH), and a side chain which differs for each amino

acid. Figure 2-1 shows the chemical structure of an amino acid, where R represents the

www.manaraa.com

 6

Figure 2-1. Chemical Structure of an Amino Acid.

www.manaraa.com

 7

side chain. The side chain of an amino acid can range in complexity. Alanine, shown in

figure 2-2, has a simple side chain consisting of a methyl group (CH3). Tryosine, shown

in figure 2-3, has a more complex side chain, including a phenolic ring.

Proteins are chains of amino acids bonded together by peptide bonds. In a peptide

bond, one hydrogen (H) from the amino group (NH2) of an amino acid “A” bonds with

the hydroxyl group (OH) from the carboxyl group (COOH) of another amino acid “B” to

form water (H20). The NH- ion from amino acid A and the CO+ ion from amino acid B

bond to join the amino acids together. A chain of these amino acids are shown in Figure

2-4.

 Typically, when amino acids have bonded together to form proteins, they are

referred to as residues. Proteins can consist of as few as 100 residues or as many as

5,000.

2.3 How do cells use proteins?

 Many critical biological processes, such as food digestion, movement, and cell

reproduction, depend on chemical reactions that would naturally occur too slowly to be

useful for sustaining life. For life to be possible, cells must accelerate these reactions by

providing catalysts, chemicals that increase the speed of reactions. In cells, proteins

called enzymes serve as the catalysts for many of these important biochemical reactions.

In addition to catalytic function, proteins provide regulatory function and are building

blocks in large multi-protein machines such as flagella (used in cell movement),

ribosomes, and ribonucleic acid polymerase (RNAP), which are used in the production of

proteins.

www.manaraa.com

 8

Figure 2-2. Chemical Structure of Alanine [7].

Figure 2-3. Chemical Structure of Tyrosine [7].

www.manaraa.com

 9

Figure 2-4. Chemical Structure of a Protein [7].

www.manaraa.com

 10

 Because proteins are such large molecules, sections of the protein can bond to

other sections of the same protein creating a more complex shape. This attribute

individualizes proteins limiting the protein to serve as a catalyst for only specific

biochemical reactions. Cells take advantage of this attribute and use it to trigger the

specific biochemical reactions that the cell needs to execute for a specific situation.

2.4 How do cells produce proteins?

 To begin a discussion of protein synthesis, the biochemical process by which

proteins are produced, we return to a term introduced earlier, DNA. DNA is a chain of

smaller molecules called nucleic acids. There are four nucleic acids in DNA: Adenine

(A), Thymine (T), Guanine (G), and Cytosine (C). Nucleic acids are connected together

by a “backbone” consisting of deoxyribose (a sugar) and phosphate. A simplified picture

of the chemical structure of DNA is shown in figure 2-5, where P represents the

phosphate group, D represents deoxyribose, and A, T, G, and C represent nucleic acids.

In cells, DNA is double stranded, where complimentary nucleic acids are bonded

together; adenine always bonds to thymine and guanine always bonds to cytosine.

 During protein synthesis, DNA serves as a recipe or program for creating a

specific protein. A series of three consecutive nucleic acids (i.e. GCC, CAT, TTA) on a

DNA strand is called a codon. One codon, called the transcription start site, represents

the location on the DNA where instructions for producing the protein start and another

codon, called the stop codon, represents the location on the DNA where the instructions

end. The codons between the transcription start site and the stop codon contain a set of

www.manaraa.com

 11

Figure 2-5. Chemical Structure of DNA

www.manaraa.com

 12

codons which code for each amino acid that makes up the protein, for instance AAG or

Adenine-Adenine-Guanine code for the amino acid Valine. The entire section of DNA

that codes for a complete protein is called a gene. On a single strand of DNA, there can

exist hundreds or even thousands of genes.

 Protein synthesis is a multi-step process. First, in a process called transcription, a

complimentary copy of the genetic code from the DNA is created and stored in a

molecule called messenger ribonucleic acid (mRNA). mRNA is composed of the same

nucleic acids as DNA, except that Uracil substitutes for Thymine. Transcription is

carried out by a multi-protein complex called ribonucleic acid polymerase (RNAP) which

sequentially attaches the nucleic acids to the growing mRNA chain. Then, in a process

called translation, molecules called "ribosomes" bond to the promoter site on the mRNA,

move down the mRNA strand decoding the genetic instructions, and build the protein

molecules with the help of another molecule called transfer ribonucleic acid (tRNA).

When the ribosome reaches the stop codon, it detaches from the mRNA and protein

synthesis is complete.

2.5 What are gene regulatory networks?

 Now that we understand that process by which proteins are produced, we can

discuss gene regulatory networks, the complex interdependence between genes that

allows cells to regulate the production of proteins.

Not all genes on the DNA strand can be transcribed into mRNA at all times.

Some genes are inducible, meaning they require the presence of an inducer protein that

increases the rate of gene transcription. Other genes are repressible, meaning that a

www.manaraa.com

 13

repressor protein can bond to the DNA at the promoter site and prevent RNAP from

binding and beginning the transcription process. By limiting the amount of mRNA that is

produced, the amount of protein that can be produced is also limited. The cell can

therefore use inducers or repressors to control what and when biochemical reactions are

executed. When combinations of these complex interdependencies between inducible

and repressible genes perform a specific cellular function, the system is called a gene

regulatory network.

2.6 Example

To more easily understand the concept of gene regulatory networks, we will

examine a naturally occurring example, bacterial quorum sensing in Vibrio fischeri.

Vibrio fischeri is a species of bacteria that can live as free-living organisms, but are often

found in a symbiotic relationship with some marine fish and squid [10]. When Vibrio

fischeri cell density is high and the bacteria is contained within the light organ of a host

organism, the bacteria produces enzymes which trigger reactions that cause the bacteria

to luminesce (emit light). When in low concentration or in a free-living state, the bacteria

are non-luminescent [10].

The ability for cells to change their behavior based on changes in cell density

(number of cells per unit volume) is called “quorum sensing” [11]. Because Vibrio

fischeri use quorum sensing to regulate luminescence, their quorum sensing can be easily

measured by light detectors, thus making them an ideal candidate for studying quorum

sensing.

www.manaraa.com

 14

The study of quorum sensing is important because many other bacteria which

cause infections also take advantage of this cellular process. For example, Pseudomonas

aeruginosa is a bacteria that can contaminate surgical wounds, abscesses, burns, ear

infections, and the lungs [8]. Patients who have received prolonged treatment with

immunosuppressive agents, antibiotics, and radiation are particularly susceptible to

infection by Pseudomonas aeruginosa [8]. In Pseudomonas aeruginosa, quorum sensing

is used to regulate the production of toxins, allowing colonies of the bacteria to grow to

sufficient size undetected by the immune system of the host [11]. Because several

species of bacteria use quorum sensing to regulate toxin production, studying this cell

behavior is highly applicable to pharmaceutical research.

A diagram of the quorum sensing gene regulatory network in Vibrio fischeri is

given in figure 2-6.

The DNA strand that controls quorum sensing contains two genes, luxR and luxI.

The set of genes luxCDABEG produce enzymes that cause bioluminescence to occur.

Each gene is transcribed to produce mRNA at a basal rate (a nominal rate of production)

and each mRNA then produces corresponding proteins LuxR, LuxI, and a set of proteins,

which are labeled LuxCDABEG. At the basal rate of transcription, insufficient

LuxCDABEG proteins are produced to generate light. The LuxI protein binds with

substrates, additional molecules that bind to enzymes, to form N-3-oxo-hexanoyl-L-

homoserine lactone (OHHL). OHHL then bonds with the LuxR protein to form a

complex, which when bound to the lux box on the DNA, induces production of more

luxR, luxI, and luxCDABEG mRNA. By inducing this protein production, a large

www.manaraa.com

 15

Figure 2-6. Quorum Sensing in Vibrio fischeri.

www.manaraa.com

 16

enough concentration of LuxCDABEG is created to trigger other reactions that cause bio-

luminescence to occur.

 The OHHL protein is referred to as an auto-inducer. This molecule passes freely

in and out of the cell membrane. When cell density is low, the cell produces these

proteins at a low rate and the likelihood of the OHHL/LuxR complex bonding to the

DNA to induce production of the various genes is very low, therefore bio-luminescence

does not occur. When cell density is high, all of the cells produce enough auto-inducer

within the environment to cause a greater concentration of the auto-inducer to be present

in the cell. This greatly increases the likelihood of the LuxR/OHHL complex binding to

the DNA and inducing protein production, which then triggers bio-luminescence.

 This example illustrates a very simple gene regulatory network that allows

the cell to detect high cell density. The gene regulatory network acts as a switch, creating

two steady states: one which produces light and another which does not. Almost all cell

functions are controlled by similar gene regulatory networks; however, many cell

functions can be much more complex and contain multiple interactions between genes,

inducing and repressing multiple genes.

2.7 Why model gene regulatory networks?

 By understanding how cells operate and communicate, we can begin to develop

methods to interrupt and control cellular processes. Understanding cells at a level of

detail that is exposed by modeling could lead to a revolution in the development of new

medicines, allowing biologists to develop treatments for illnesses ranging from HIV to

cancer.

www.manaraa.com

 17

 Already, biologists and modelers have had some success using gene regulatory

network modeling to understand cellular behavior in new ways. In 1998, John Tyson and

his coworkers developed mathematical models for cell mitosis (the process that controls

cell-division) in frog eggs [12,13]. The model predicted details of the protein interaction

involved in this process that had not yet been discovered. In 2003, these predictions were

confirmed in a laboratory [14].

 Adam Arkin and his coworkers have used exact stochastic simulation, the same

type of simulation analyzed throughout this work, to help show that stochastic variation

(or noise) can participate in pathway selection in gene regulatory networks by analyzing

and developing models of phage λ-infected Escherichia coli cells [15]. Cox et al. later

used similar techniques to gain insight on the importance of noise in the quorum sensing

gene regulatory network in Vibrio fischeri [16].

 Drew Endy has also developed models of the phage T7 virus in Escherichia Coli

[17]. His model “accounts for entry of T7 genome into its host, expression of T7 genes,

replication of T7 DNA, assembly of T7 procapsids, and packaging of T7 DNA to finally

produce intact T7 progeny” and matches experimental observations made on this virus

for the past 30 years [17]. He argues this model is a “useful tool for exploring and

understanding the dynamics of cell-growth” and claims that biological simulation can be

used to [17]:

1. Find mismatches between the published mechanisms and data.

2. Test multiple treatment strategies before attempting them in a lab.

 3. Provide insights from nature for the design of nanoscale biological tools.

www.manaraa.com

 18

2.8 Conclusion

Gene regulatory networks are complex interactions between different

biochemicals that control cellular functions. By modeling these gene regulatory

networks, we hope to develop innovative techniques for suppressing or eliminating some

of the world’s most deadly illnesses. The long term goal of this research is to give

biologists a software platform where they can conduct experiments quickly and

inexpensively in a virtual laboratory.

www.manaraa.com

 19

Chapter 3

Modeling Gene Regulatory Networks

 Now that we have introduced the concept of a gene regulatory network and

explained the importance of developing gene regulatory network models, we can begin to

discuss the algorithms used to simulate gene regulatory network models. This chapter

will cover several techniques including molecular dynamics simulation, ordinary

differential equations modeling and exact stochastic simulation. This discussion will

create a foundation for our analysis of the performance of these techniques provided in

the next chapter.

3.1 Molecular Dynamics Simulation

To simulate gene regulatory network models, we need an algorithm that can

determine the time evolution of reacting chemical species within a volume. One possible

approach is to use a classical molecular dynamics simulation. For more information on

this topic, consult [18,19]. In its simplest form, each molecule is treated as a sphere and

the simulator tracks each molecule’s three-dimensional position and velocity. During

each iteration of the algorithm, the kinetic and potential energies of each molecule are

determined and the molecule’s velocity and position are adjusted. When two molecules

collide, the algorithm assesses if a reaction has occurred and changes the structure of the

system accordingly. More complex versions of these simulation algorithms account for

the structure of each molecule, the rotation of the molecule, the rotation of each of the

www.manaraa.com

 20

atoms that compose a molecule, and other details regarding the quantum mechanics of the

system.

Although this technique is very accurate, this solution is similar to the classic N-

Body problem in computer science and is computationally complex. Even for just a few

molecules, this solution requires too much simulation time to be an effective modeling

technique for a biochemical system. This technique also captures unnecessary detail

about the chemical system. Although some biologists have attempted to model

individual proteins using molecular dynamics, see “protein folding” in [9], most

biologists modeling gene regulatory networks tend to only be concerned with the genes

that are being expressed/regulated and the overall concentrations of chemical species, not

the exact position of each molecule.

3.2 Ordinary Differential Equations Modeling

Another approach to modeling gene regulatory networks is to treat the system as

spatially homogeneous, where the position of each individual molecule is irrelevant. For

this technique to be accurate, the chemical system must be well-stirred, meaning that the

molecules in the mixture are constantly colliding with each other and that the probability

of two molecules colliding can be determined by the concentration of the various species

in the mixture.

Using a differential equations modeling approach, we convert the concentration of

each chemical species to a single-valued continuous function with respect to time [5]. To

illustrate this idea, suppose we wished to model the biochemical network given in figure

3-1.

www.manaraa.com

 21

Figure 3-1. Sample Biochemical Network

www.manaraa.com

 22

 Here we see a system that includes DNA, which produces mRNA at a rate K1.

mRNA can decay at a rate K6 and can produce Protein at a rate K2. Protein can

decay at a rate of K5 and can dimerize at a rate K3. The reverse dimerization reaction

can occur at a rate K4. To use a differential equations model, these reactions would be

converted into the following set of ordinary differential equations.

 0=
dt

dDNA

DimerkPk
dt

dDimer

DimerkPkPkMRNAk
dt
dP

MRNAkDNAk
dt

dMRNA

4

2

3

4

2

352

61

−=

+−−=

−=

 Using standard stiff differential equation solvers, like those provided in Matlab,

we can simulate biologically relevant problems in less than a day, but not necessarily

accurately. Ordinary differential equations models ignore the inherent random

fluctuations of the systems, which is their major limitation when applied to systems with

small numbers of molecules. Special care must be taken when selecting the time-step to

ensure that the differential equations model does not allow the concentrations of the

chemical species to fall below zero, which makes no physical sense in a chemical system.

Models with low concentration can yield results where species concentrations can contain

real values, i.e. 1.5 molecules of mRNA, when the actual system can only contain integer

www.manaraa.com

 23

values of molecules. This inaccuracy is often present when modeling gene regulatory

networks because the population of certain chemical species can be very small, but can

have a large effect on the time-evolution of the system

3.3 Gillespie’s First Reaction Method

Another approach that resolves this accuracy problem was proposed by Daniel T.

Gillespie in the mid 1970s. His algorithm, called the First Reaction Method, treats the

systems as a stochastic process with discrete variables that represent the populations, not

concentrations, of chemical species [5,6]. This algorithm is given in figure 3-2.

To understand this algorithm fully, we must first define the term propensity used

in step 5. Consider the following chemical reaction:

 CBA →+ (1)

The probability that the reaction given in equation 1 occurs, or the probability that a

given molecule A reacts with a given molecule B , in a small time dt is

)(11 dtodtaP += (2)

As dt approaches zero, the propensity term 1a dominates equation 2. The propensity

may be a function of volume, temperature, concentration, etc. In step 4 of the First

Reaction Method we calculate the propensity of the reaction based on the stochastic rate

www.manaraa.com

 24

1. Initialize a list of n chemical species and their
 initial numbers of molecules nXXX ,...,, 21 .
2. Initialize a list of m chemical reactions and their
 associated stochastic rate constants mkkk ,...,, 21 .
3. Initialize the current time 0←t .
4. Calculate the propensity, maaa ,...,, 21 , for each of the m
 chemical reactions.
5. For each reaction i , generate a putative time iτ ,
 according to an exponential distribution with
 parameter ia .
6. Let µ be the reaction whose putative time, µτ is least.
7. Change the number of molecules nXXX ,...,, 21 , to reflect the
 execution of reaction µ .
8. Set µτ+← tt .
9. Go to Step 4.

Figure 3-2: Gillespie’s First Reaction Method.

www.manaraa.com

 25

constant associated with the reaction 1k and the current populations of the reactants AX

and BX , using the following equation:

 11 kXXa BA ⋅⋅= (3)

Multiplying AX and BX together in equation 3 reflects the number of combinations by

which the reaction could occur, thus making the propensity depend on the concentrations

of the chemical reactants. The input rate constant 1k is used to account for all other

factors (volume, temperature, etc.) that may determine the propensity of the reaction.

Step 5 of the algorithm uses the propensity generated in step 4 to generate a

putative time or the amount of time it will take for this reaction to occur based on the

current state of the system. This is accomplished by generating a uniformly distributed

random number between 0 and 1 (URN), scaling it to fit the exponential distribution, and

multiplying that number by the propensity, as shown in the equation below.

)log(1 URN
ai

i −=τ (4)

Step 6 selects the reaction with the smallest putative time using a linear search.

Step 7 updates the number of molecules based on the stoichiometry of the reaction. For

example, if we were executing the reaction given in equation 1, we would decrement the

www.manaraa.com

 26

values AX and BX and increment the value of CX . Step 8 updates the current time

based on the putative time selected in Step 6.

3.4 Gillespie’s Direct Method

Gillespie’s First Reaction Method accurately simulates chemicals reacting in a

spatially homogeneous mixture, but is inefficient. Gillespie realized that for each

iteration of the algorithm M exponentially distributed random numbers must be

generated. This calculation is time-consuming because it involves calculating the natural

log function which is computationally intense. To reduce this costly computation,

Gillespie developed the Direct Method, which sums the individual reaction propensities

to create a system propensity. A single scaled exponential random number is then

generated from the system propensity which represents the time elapsed between reaction

events for the entire system. A scaled uniform random number is then generated to

determine which reaction occurred during the time period. By collapsing the reaction

propensities, this technique requires only two random numbers to be generated per

iteration of the algorithm regardless of problem size. This algorithm is given in figure 3-

3.

Steps 5 and 6 of the First Reaction Method determine how much time elapses in

the system and which reaction to execute by generating putative times for each reaction

and selecting the reaction whose putative time is least. Gillespie’s Direct Method

replaces steps 5 and 6 of the First Reaction Method with steps 5, 6, and 7, by summing

the propensities and determining when the next reaction event should occur for the entire

www.manaraa.com

 27

1. Initialize a list of n chemical species and their
 initial numbers of molecules nXXX ,...,, 21 .
2. Initialize a list of m chemical reactions and their
 associated stochastic rate constants mkkk ,...,, 21 .
3. Initialize the current time 0←t .
4. Calculate the propensity, maaa ,...,, 21 , for each of the m
 chemical reactions.
5. Sum the propensity values: ∑

=

=
M

i
itotal aa

1

.

6. Generate a putative time for the chemical system µτ
 according to an exponential distribution with
 parameter totala .
7. Choose a reaction µ using a uniformly distributed random
 number and a distribution of the form
 P(Reaction=µ)=

totala
aµ .

8. Change the number of molecules nXXX ,...,, 21 , to reflect the
 execution of reaction µ .
9. Set µτ+← tt .
10. Go to Step 4.

Figure 3-3: Gillepie’s Direct Method.

www.manaraa.com

 28

system. The reaction selection is then handled by dividing each individual propensity by

the total propensity, giving a normalized uniform distribution which can be used to select

a reaction based on the generation of a uniform random number. Using the Direct

Method, we only need to generate one exponentially distributed random number and one

uniformly distributed random number per iteration of the algorithm, regardless of

chemical system size, thus improving performance over the First Reaction Method.

3.5 The Dependency Graph

In the late 1990’s, Gibson and Bruck developed several key enhancements to

Gillespie’s methods that improve performance by an order of magnitude. These

enhancements were presented in [6].

The first enhancement was the creation of a dependency graph to determine which

propensity values need to be updated when a particular reaction is executed. During

initialization, each reaction is examined to see what effect its execution has on the species

population values of the system. If a reaction A is executed that modifies the species

populations of another reaction B, reaction B’s propensity must be recalculated upon the

execution of reaction A. This is more easily understood with an example. Suppose we

convert the example system given in section 3.2 to the following set of reactions:

A: DNA -> DNA + mRNA

B: mRNA -> *

C: mRNA -> mRNA + Protein

www.manaraa.com

 29

D: Protein -> *

E: 2 Protein -> Dimer

F: Dimer -> 2 Protein

Notice the execution of Reaction A only modifies the population of the species mRNA.

Since the calculation of the propensity values for Reaction B and C depend on the

population of mRNA, Reaction A affects Reaction B and C. Reactions A, D, E, and F are

unaffected by the execution of Reaction A and will therefore have the same propensity

before and after the execution of Reaction A. We can therefore build a dependency graph

which stores which propensity values must be recalculated for the execution of each

reaction and use this dependency graph to prevent the unnecessary calculation of reaction

propensities thus improving performance. The adjacency matrix for the dependency

graph is given in figure 3-4, where the rows represent the reactions executed and the

columns represent the reaction affected.

Because the adjacency matrix for most gene regulatory network models is very

sparse, this enhancement greatly improves the performance of Gillespie’s methods.

3.6 Gibson and Bruck’s Next Reaction Method

Using a dependency graph and several other enhancements to Gillespie’s

methods, Gibson and Bruck proposed a new method called the Next Reaction Method,

which today remains the fastest known algorithm for exactly stochastically simulating a

spatially homogeneous system. This algorithm is stated in figure 3-5 [6].

www.manaraa.com

 30

 A B C D E F
A X X
B X X
C X X
D X X
E X X X
F X X X

Figure 3-4: Example Adjacency Matrix.

www.manaraa.com

 31

1. Initialize:

 (a) Initialize nXXX ,...,, 21 , set 0←t ;
 (b) Generate a dependency graph G based on the
 stoichiometry of the m chemical reactions;
 (c) Calculate the propensity function, maaa ,...,, 21 , for
 each of the m chemical reactions;
 (d) For each reaction i , generate a putative time, iτ ,
 according to an exponential distribution with
 parameter ia ;
 (e) Store the iτ values in an indexed priority queue
 P .
2. Let µ be the reaction whose putative time, µτ stored in
 P is least.
3. Let τ be µτ .
4. Change the number of molecules to reflect the execution
 of reaction µ . Set τ←t .
5. For each edge (µ ,α) in the dependency graph G ,
 (a) Update αa ;
 (b) If µα ≠ , set ttaa newold +−←))(/(,, αααα ττ ;
 (c) If µα = , generate a random number, ρ , according
 to an exponential distribution with parameter µa ,
 and set t+← ρτα ;
 (d) Replace the old in ατ value in P with the new
 value.
6. Go to step 2.

Figure 3-5: Gibson and Bruck’s Next Reaction Method.

www.manaraa.com

 32

 Besides the dependency graph mentioned in the previous section, which is

initialized in step 1b and is used in step 5 to reduce the number of calculations required

for each step of the algorithm, Gibson and Bruck make two key enhancements to the

algorithm to improve performance.

 The first enhancement is to change from relative time to absolute time and reuse

random numbers that have not yet been used to effect the system time. This is

accomplished by generating putative times for each reaction on initialization (see step

1d), selecting the reaction to execute (see step 2), and generating a new putative time for

the reaction executed (see step 5c). For reactions that were not executed, but had their

propensity values affected by the execution of the selected reaction, their putative times

are scaled in step 5b using the following equation.

 ttaa newold +−←))(/(,, αααα ττ (5)

This reduces the number of random numbers that must be generated for each iteration of

the algorithm to only one, which is an improvement on the M random numbers required

for the First Reaction Method and the two random numbers required for the Direct

Method.

The other enhancement made to Gillespie’s methods is the use of an indexed

priority queue, initialized in Step 1e of this method and used in Step 2. Recall that in the

First Reaction Method, after the putative times for each of the reactions had been

determined, a linear search of the putative times is required to determine which reaction

to execute. This search has a time complexity which is proportional to M, the number of

www.manaraa.com

 33

reactions in the system. In the Next Reaction Method, the indexed priority queue is a data

structure which stores putative times in a binary tree, where the root node contains the

node with the minimum putative time. This data structure can be maintained by

operations which are proportional to the logarithm of M.

3.7 Gibson and Bruck’s Efficient Direct Method

 Although Gibson and Bruck propose that the Next Reaction Method is the most

efficient technique for stochastically simulating coupled chemical reactions, they also

suggest ways to improve the Direct Method. The first enhancement is to use a

dependency graph to reduce the number of propensity calculations required for each

iteration of the algorithm. The next enhancement is used to accelerate the calculation of

the total propensity and reaction selection stages by storing the propensity values in a

data structure which we will refer to as a “sum tree.” A sum tree consists of a binary tree

where each of the leaf nodes contains a propensity value and each parent node contains

the sum of its ancestors. Using this data structure, the total propensity will always be

stored at the root of the binary tree and this data structure can be used as a search tree

when selecting the reaction. This reduces the reaction selection step from time

complexity O(n) to O(log n) and reduces the number of calculations that must be

performed when determining the total propensity of the system. Because Gibson and

Bruck did not name this algorithm, we will refer to it as the Efficient Direct Method.

This algorithm is stated in figure 3-6.

www.manaraa.com

 34

1. Initialize:

 (a) Initialize nXXX ,...,, 21 , set 0←t ;
 (b) Generate a dependency graph G based on the
 stoichiometry of the m chemical reactions;
 (c) Calculate the propensity function, maaa ,...,, 21 , for
 each of the m chemical reactions;
 (d) Store the propensity values maaa ,...,, 21 in a sum tree
 T ;
2. Retrieve the value ∑

=

=
M

i
itotal aa

1

 by reading the root node of
 the sum tree T .
3. Generate a putative time for the chemical system µτ
 according to an exponential distribution with
 parameter totala .
4. Choose a reaction µ using a uniformly distributed random
 number and a distribution of the form
 P(Reaction=µ)=

totala
aµ by searching T .

5. Change the number of molecules nXXX ,...,, 21 , to reflect the
 execution of reaction µ .
6. Set µτ+← tt .
7. For each edge (µ ,α) in the dependency graph G ,
 (a) Update αa ;
 (b) Replace the old αa value in T with the new value.

(c) Update αa ’s parent nodes’ values in T .
10. Go to Step 4.

Figure 3-6: Gibson and Bruck’s Efficient Direct Method.

www.manaraa.com

 35

3.8 Other Techniques

Several other techniques exist for modeling gene regulatory networks. The

simplest way is to represent the regulatory network as a directed graph where the vertices

are genes and the edges represent interactions between genes. Often the basic definition

of a directed graph is expanded to store whether the interaction between the genes is

positive or negative regulation. Another modeling approach is to use Bayesian networks,

where vertices in an acyclic graph represent genes or other elements that effect the

system and correspond to random variables. Boolean networks are another technique

used where the expression of a gene is considered on or off and the interaction between

genes can be described by a digital circuit composed of AND and OR gates. A good

review of these techniques along with more information on the various differential

equations models used to represent gene regulatory networks is given in [3].

One of the most recent developments in gene regulatory network modeling has

been Gillespie’s work on “tau-leaping” methods, which is a form of approximate

stochastic simulation where multiple reactions are executed in a single step. These

techniques greatly improve the performance of stochastic simulation at the potential cost

of accuracy. For more information on this technique, consult [20,21].

3.9 Conclusion

This chapter has introduced the reader to several techniques for modeling gene

regulatory networks. Because molecular dynamics modeling is inefficient and other

modeling techniques can be inaccurate, this work will focus on exact stochastic

www.manaraa.com

 36

simulation. A review of the existing techniques for exact stochastic simulation were

presented, highlighting the works of Gillespie and Gibson and Bruck. In the following

chapters we can use this discussion to analyze the performance of these techniques and

discuss further enhancements to these methods.

www.manaraa.com

 37

Chapter 4

Analyzing Exact Stochastic Simulation

 The previous chapter introduced several different exact stochastic simulation

algorithms, primarily the First Reaction Method, the Direct Method, the Next Reaction

Method, and the Efficient Direct Method. In this chapter, we will analyze the

performance of each these algorithms by coding the algorithms in C++ and examining

their performance on a set of generated input files ranging in model size. We also will

suggest modifications to these algorithms and demonstrate that these modifications can

improve simulator performance.

4.1 Creating a Model Set

 To model the performance of the simulation algorithms accurately we must first

create a set of models that produce consistent results. To do this, we create a program

that generates models based on two parameters, a reaction count and an “update factor”.

The reaction count is the number of reactions represented in the model and indicates

model size. The update factor dictates the average number of propensity updates that

must be performed when a reaction is executed. For instance, with the following model,

1: A -> B

2: B -> C

3: C -> D

4: D -> E

www.manaraa.com

 38

5: E -> F

6: F -> A

the reaction count is 6 and when any reaction is executed, 2 reactions must be updated

(i.e. if reaction 3 is executed, the propensity values for reaction 3 and 4 must be updated).

The update factor is defined in this work as the number of reactions that must be updated

for each reaction. Therefore the update factor for the model given above is 2. The

following model has 6 reactions and an update factor 4.

1: A -> B

2: A -> B

3: B -> C

4: B -> C

5: C -> A

6: C -> A

In this case, the execution of reaction 3 impacts the propensity value of reactions 3, 4, 5,

and 6, therefore the update factor is 4.

The maximum possible update factor for a given model is the model size (the

number of reactions). In this scenario, every reaction would affect the propensity value

of every other reaction. In real chemical systems, the update factor tends to be much less

than the model’s reaction count (less than 10%), and this underlying assumption is what

makes Gibson and Bruck’s performance enhancements possible. With a high update

www.manaraa.com

 39

factor, the dependency graph’s adjacency matrix would be very dense making the number

of propensity updates approach the number of reactions in the model for each step of the

algorithm.

The two models presented previously have uniform structure in that each reaction

affects the same number of reactions. Models could be built that affect different numbers

of reactions, like the following model.

1: A -> B

2: B -> C

3: C -> A

4: B -> A

 In this case, reaction 1 affects the propensity value of 3 reactions and reaction 3

only affects the propensity value of 2 reactions. Depending on the rate constants of the

reaction 1 and reaction 3, along with the time evolution of the population species, the

update factor of the model can vary as the simulator executes. Using a model with

varying update factor would make characterizing performance of each simulator difficult,

so we generate models with uniform structure. Our model set sequentially sweeps update

factors 2 through 8 by increments of 2 and sweeps reaction counts from 12 to 600 at 12

reaction increments. This creates 200 models to run for each simulator. The code used to

generate these models can be found in the appendices.

 Although the simulation algorithms allow reactions to be entered that contain

multiple reactants with varying coefficients, to compare the performance of our

www.manaraa.com

 40

simulators we limit our models to have uniform structure to simplify our analysis. Each

reaction consists of one reactant and one product. We assume that using more complex

reactions will not effect our performance comparison, because the cost of calculating the

propensity functions will be the same for each simulator.

 Each simulation is executed on a Sun Ultra-60 processor running Sun OS v5.8.

The simulators are compiled using the Sun Workshop 6 C++ compiler with the highest

performance optimization settings. The performance results printed in this work are

gathered by averaging four separate runs of the simulators running each model for

5,000,000 reactions.

4.2 The First Reaction Method

 We start our performance analysis by coding the Gillespie’s First Reaction

Method (First), the oldest, simplest and most inefficient algorithm for exact stochastic

simulation. Because this algorithm must generate m (the number of reactions) random

numbers for each iteration of the algorithm and does not take advantage of a dependency

graph, we would expect the execution time of this algorithm to grow linearly with

reaction count and to be unaffected by the update factor. The figure 4-1 shows the

performance of the First simulator and verifies our expectation.

We then add the dependency graph proposed by Gibson and Bruck to see if this

enhancement positively impacts the performance of the simulator. We will call this

simulator Gillespie’s First Reaction Method with a Dependency Graph and abbreviate it

FirstDG. Using a dependency graph we can significantly reduce the number of

propensity recalculations that must be performed in each step of the algorithm, but we

www.manaraa.com

 41

First Execution Times

0.00

500.00

1000.00

1500.00

2000.00

2500.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Update Factor = 2
Update Factor = 8

Figure 4-1: First Execution Times.

www.manaraa.com

 42

still must generate m exponentially distributed random numbers for each iteration. It

would be expected that FirstDG would outperform First for small update factors, because

FirstDG would update only a small number of propensities per iteration. Figure 4-2

shows that for update factors as high as 8, FirstDG does outperform First.

4.3 The Direct Method

 We now look at the Direct Method, Gillespie’s improvement to the First Reaction

Method. Because the Direct Method (Direct) does not utilize a dependency graph, we

once again expect that its performance will not be affected by the update factor. Figure

4-3 demonstrates this. The outlier at model size 175 is due to machine load imbalance.

We can also show that Direct outperforms First and FirstDG in all cases by

looking at figures 4-4 and 4-5. This occurs because Direct generates only two random

numbers for each iterations of its algorithm, where First and FirstDG must generate m

(the number of reactions in the model) random numbers.

Now we add a dependency graph to the Direct Method, to create simulator

DirectDG, and see if this improves the performance of Direct. Figure 4-6 shows that

DirectDG outperforms Direct for update factors as high as 8.

 In the DirectDG simulator, we noticed that for each iteration of the algorithm, the

propensity values must be summed to generate the total propensity, which becomes a

significant performance bottleneck as reaction count increases. To reduce this update

time, we implemented another simulator called DirectDG2, which when the individual

reaction propensity values are being updated, the total propensity value is also updated by

www.manaraa.com

 43

First vs. FirstDG

0.00

500.00

1000.00

1500.00

2000.00

2500.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

First
First DG

Figure 4-2: First vs. FirstDG (Update Factor = 8)

Direct Execution Times

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Update Factor = 2
Update Factor = 8

Figure 4-3: Direct Execution Times

www.manaraa.com

 44

Direct vs. First and FirstDG

0.00

500.00

1000.00

1500.00

2000.00

2500.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

First
First DG
Direct

Figure 4-4: Direct vs. First and FirstDG (Update Factor = 2)

Direct vs. First and FirstDG

0.00

500.00

1000.00

1500.00

2000.00

2500.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

First
First DG
Direct

Figure 4-5: Direct vs. First and FirstDG (Update Factor = 8)

www.manaraa.com

 45

DirectDG vs. Direct

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct
Direct DG

Figure 4-6: DirectDG vs. Direct (Update Factor = 8)

www.manaraa.com

 46

subtracting the old propensity value and adding the newly calculated propensity value.

This enhancement makes the total propensity calculation time depend on the update

factor instead of the reaction count, improving performance. A comparison of the

DirectDG and DirectDG2 simulators shows that DirectDG2 outperforms DirectDG for

update factors as high as 8. A plot of this is shown in figure 4-7.

4.4 The Efficient Direct Method

 The Efficient Direct Method (EfficientDirect) was first outlined in Gibson and

Bruck’s paper on improving the performance of Gillespie’s simulation algorithms [5,6].

Their enhancements included the addition of a sum tree. This algorithm is stated in detail

in chapter 3. Figure 4-8 shows that this algorithm’s performance is greatly affected by

the update factor and grows slowly with respect to reaction count. Once again the

outliers are caused by machine load imbalance. Figures 4-9 and 4-10 compare the

performance of EfficientDirect with DirectDG2. Notice that for small models,

DirectDG2 outperforms EfficientDirect, because the sum tree adds significant overhead

and almost no performance gain for small models and a large performance improvement

for models with high reaction count.

4.5 The Next Reaction Method

 The Next Reaction Method (Next) developed by Gibson and Bruck is widely

accepted as the fastest known simulator for performing exact stochastic simulation [6].

Figure 4-11 shows that because of the indexed priority queue and other performance

www.manaraa.com

 47

DirectDG2 vs. DirectDG

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct
Direct DG

Figure 4-7: DirectDG2 vs. DirectDG (Update Factor = 8)

EfficientDirect Execution Times

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Update Factor = 2
Update Factor = 4
Update Factor = 6
Update Factor = 8

Figure 4-8: EfficientDirect Execution Times

www.manaraa.com

 48

EfficientDirect vs. DirectDG2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Efficient Direct

Figure 4-9: EfficientDirect vs. DirectDG2 (Update Factor = 2)

EfficientDirect vs. DirectDG2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Efficient Direct

Figure 4-10: EfficientDirect vs. DirectDG2 (Update Factor = 8)

www.manaraa.com

 49

Next Execution Times

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Update Factor = 2
Update Factor = 4
Update Factor = 6
Update Factor = 8

Figure 4-11: Next Execution Times

www.manaraa.com

 50

enhancements implemented in the Next Reaction Method, the execution time for the Next

Reaction Method does not grow in relation to reaction count, but is greatly affected by

update factor. Figures 4-12 and 4-13 show that Next outperforms EfficientDirect for all

models. Figures 4-14 and 4-15 show that Next only outperforms the DirectDG2

algorithm for larger models. Outliers are caused by machine load imbalance.

4.6 Conclusion

 The performance data demonstrates that the new DirectDG2 algorithm is an

efficient algorithm for simulating models with small reaction counts and larger update

factors. The Next simulator is shown to be the ideal solution for simulating large models.

The other approaches are not as competitive in the scenarios considered.

www.manaraa.com

 51

Next vs. EfficientDirect

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Efficient Direct
Next

Figure 4-12: Next vs. EfficientDirect (Update Factor = 2)

Next vs. EfficientDirect

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Efficient Direct
Next

Figure 4-13: Next vs. EfficientDirect (Update Factor = 8)

www.manaraa.com

 52

Next vs. DirectDG2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next

Figure 4-14: Next vs. DirectDG2 (Update Factor = 2)

Figure 4-15: Next vs. DirectDG2 (Update Factor = 8)

Next vs. DirectDG2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next

www.manaraa.com

 53

Chapter 5

The Adaptive Method

 Now that we have measured the performance of several exact stochastic

simulation algorithms and discussed how their performance is impacted by model size

and update factor, we now focus on creating a system for selecting the algorithm that

optimizes performance when simulating a particular model. To accomplish this, we

derive an estimate for how to determine which algorithm to select based on update factor

and reaction count. Unfortunately, it is impossible to calculate the update factor before

simulating the model. To overcome this problem, we propose a new algorithm for

stochastic simulation called the Adaptive Method, which monitors the update factor as the

simulator progresses and adaptively controls which simulator to use for the model. We

then build this simulator and compare it to the performance of the other simulators. The

analysis shows that this technique is effective in improving the overall performance of

stochastic simulation.

5.1 Next vs. DirectDG2

 The two best performing simulators from chapter four were the Next and the

DirectDG2 simulators. A comparison of their execution times is given in figures 5-1 to

5-4.

 The results show that DirectDG2 outperforms Next for models with a small

reaction count. The point at which Next begins to outperform DirectDG2 depends on the

update factor. Figure 5-5 shows a plot of the approximate points where the execution

www.manaraa.com

 54

Figure 5-1: Next vs. DirectDG2 (Update Factor = 2)

Figure 5-2: Next vs. DirectDG2 (Update Factor = 4)

Next vs. DirectDG2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next

Next vs. DirectDG2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next

www.manaraa.com

 55

Figure 5-3: Next vs. DirectDG2 (Update Factor = 6)

Figure 5-4: Next vs. DirectDG2 (Update Factor = 8)

Next vs. DirectDG2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next

Next vs. DirectDG2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next

www.manaraa.com

 56

 Figure 5-5: Intersection of Execution Time Curves for DirectDG2 vs. Next

Intersection of Execution Time Curves

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350

Model Size (Reactions)

U
pd

at
e

Fa
ct

or

Better to Use
DirectDG2

Better to Use
Next

www.manaraa.com

 57

time curves meet and shows which simulator is better to use based on the properties of

the model.

 Using figure 5-5 we should be able to design a simulation algorithm that

examines the model at startup and determines which algorithm is better to use. To do

this, we need to know the model size and the update factor. Measuring the model size at

startup is trivial, but the update factor is dependent on which reactions are executed and

can vary as the simulation progresses. Therefore to correctly handle the update factor, we

must measure the update factor as the simulation progresses and adapt our simulator to

select the simulation algorithm that optimizes performance. To do this, we have designed

a simulation algorithm called the Adaptive Method.

5.2 The Adaptive Method

A summarized version of the Adaptive Method algorithm is stated in figure 5-6.

The complete Adaptive Method algorithm is given in figure 5-7.

 The first step of the algorithm is similar to the Next simulator, initializing a

dependency graph and an indexed priority queue. The first step also initializes a variable

called Mode which stores the current simulation algorithm that is being used,

ReactionsExecuted which stores the number of reactions executed since the last

update factor check, UpdateCount which stores the number of updates of propensity

values performed since the last update factor check, and UpdateFactorThreshold

which stores the estimated value of where the DirectDG2 simulator will begin to

outperform the Next simulator.

www.manaraa.com

 58

1. Initialize
 (a) Initialize data structures for performing NEXT;
 (b) Set Mode = NEXT;
 (c) Reset ReactionsExecuted and UpdateCount to 0;
 (d) Estimate the UpdateFactorThreshold;
2. If (Mode == NEXT)
 (a) Run a single step of NEXT;
 (b) update UpdateCount;
3. If (Mode == DIRECTDG2)
 (a) Run a single step of DIRECTDG2;
 (b) update UpdateCount;
4. Increment ReactionsExecuted;
5. If (ReactionsExecuted == PERIOD)
 (a) Compute the current UpdateFactor;
 (b) If we should switch to DIRECTDG2
 i. Initialize DIRECTDG2 data structures;
 ii. Set Mode = DIRECTDG2;
 (c) If we should switch to NEXT
 i. Initialize NEXT data structures;
 ii. Set Mode = DIRECTDG2;
 (d) Reset ReactionsExecuted and UpdateCount to 0;
5. Goto 2.

Figure 5-6: Summary of the Adaptive Method

www.manaraa.com

 59

1. Initialize:
 (a) Initialize nXXX ,...,, 21
 (b) Set t = 0;
 (b) Generate a dependency graph G based on the
 stoichiometry of the m chemical reactions;
 (c) Calculate the propensity function, maaa ,...,, 21 , for
 each of the m chemical reactions;
 (d) For each reaction i , generate a putative time, iτ ,
 according to an exponential distribution with
 parameter ia ;
 (e) Store the iτ values in an indexed priority queue
 P .
 (f) Set Mode = NEXT;
 (g) Set ReactionsExecuted = 0;
 (h) Set UpdateCount = 0;
 (i) Set UpdateFactorThreshold = (m – 60) / 30 / 2;
2. if (MODE == NEXT) then
 (a) Let µ be the reaction whose putative time, µτ
 stored in P is least.
 (b) Let τ be µτ .
 (c) Change the number of molecules to reflect the
 execution of reaction µ . Set τ←t .
 (d) For each edge (µ ,α) in the dependency graph G ,
 i. Update αa ;
 ii. If µα ≠ , set ttaa newold +−←))(/(,, αααα ττ ;
 iii. If µα = , generate a random number, ρ ,
 according to an exponential distribution
 with parameter µa , and set t+← ρτα ;
 iv. Replace the old in ατ value in P with the new
 value.
 v. Increment UpdateCount;
3. if (Mode == DIRECTDG2) then
 (a) Generate a putative time for the chemical system µτ
 according to an exponential distribution with
 parameter totala ;
 (b) Set µτ+← tt ;

Figure 5-7: The Adaptive Method

www.manaraa.com

 60

 (c) Choose a reaction µ using a uniformly distributed
 random number and a distribution of the form

totala
a

action µµ ==)Pr(Re ;
 (d) Change the number of molecules nXXX ,...,, 21 , to
 reflect the execution of reaction µ ;
 (e) For each edge (µ ,α) in the dependency graph G ,
 i. Let temp = αa ;
 ii. Update αa ;
 iii. Let totala = αa - temp;
 iv. Increment UpdateCount;
4. Increment ReactionsExecuted;
5. If (ReactionsExecuted == PERIOD) then
 (a) Set UpdateFactor = UpdateCount / PERIOD / 2;
 (b) if ((UpdateFactor > UpdateFactorThreshold) and
 (Mode == NEXT)) then
 i. Set Mode = DIRECTDG2;
 ii. Sum the propensity values: ∑

=

=
M

i
itotal aa

1

;
 (c) else if ((UpdateFactor < UpdateFactorThreshold)
 and (Mode == DIRECTDG2)) then
 i. Set Mode = NEXT;
 ii. For each reaction i , generate a putative time,
 iτ , according to an exponential distribution
 with parameter ia added to the current time
 t ;
 iii. Store the iτ values in an indexed priority
 queue P .
 (d) set UpdateCount = 0;
 (e) set ReactionsExecuted = 0;
6. Goto step 2.

Figure 5-7: continued.

www.manaraa.com

 61

 If the current mode is set to NEXT, the second step of the algorithm performs a

Next simulation step and increments UpdateCount when a propensity value is updated.

If the current mode is set to DIRECTDG2, The third step of the algorithm performs a

DirectDG2 simulation step and increments UpdateCount when a propensity value is

updated. Step 4 then increments the ReactionsExecuted variable.

 For every PERIOD reactions executed, Step 5 of the algorithm performs an

update factor check by computing the current update factor and comparing it to the

update factor threshold to see if the optimal simulation algorithm is currently being

executed. If not, Steps 5b and 5c set the algorithm to the correct algorithm and

reinitialize the necessary data structures for performing that algorithm. The value of

PERIOD used in this performance analysis was 5,000. Increasing PERIOD will reduce

the rate at which the algorithm checks the update factor, reducing algorithm switching

overhead, but causing the simulator to possibly use a non-ideal algorithm for a longer

period of time. Decreasing PERIOD will have the opposite affect, increasing the

overhead associated with switching algorithms, but reducing the amount of time spent

executing the incorrect algorithm. Further research is required to determine the best

value for PERIOD or whether its value could be adaptively controlled. In this analysis

the value 5,000 generated results that closely matched the performance of the best

performing simulation algorithm.

www.manaraa.com

 62

5.3 Performance Analysis

 To analyze the performance of the adaptive method, the same setup that was

described in chapter 4 was used to test a C++ implementation of the Adaptive Method.

The results are given in figures 5-8 through 5-11. Outliers are the result of machine load

imbalance.

 Figures 5-8 through 5-11 show that performance of the Adaptive Method closely

matches the best performing simulator. The overhead associated with monitoring the

update factor throughout the execution of the simulator appears to be minimal.

 All of these tests were run on models where the update factor was fixed to a

particular value. When running on a real model, the update factor can change throughout

the execution of the model. Because the Adaptive Method checks the simulation’s update

factor every PERIOD steps, the Adaptive Method can actually outperform the Next and

DirectDG2 algorithms by choosing an optimal simulation algorithm to run as the

simulation progresses.

 To verify that the Adaptive Method is an effective solution for other computers,

the Adaptive, Next, and DirectDG2 simulators are ported to the Windows platform and

the test models are run on a 1 GHz Intel Pentium III with 512 MB of RAM running

Windows XP. The simulators are compiled using Microsoft Visual C++ using the

highest optimization settings. Figures 5-12 through 5-15 show the performance on this

machines. The reported values are collected by averaging the execution times for four

separate runs of each simulator for 1,000,000 reactions.

www.manaraa.com

 63

 Figure 5-8: Adaptive Method vs. DirectDG2 and Next (Update Factor = 2)

 Figure 5-9: Adaptive Method vs. DirectDG2 and Next (Update Factor = 4)

Adaptive vs. DirectDG2 and Next

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next
Adaptive

Adaptive vs. DirectDG2 and Next

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next
Adaptive

www.manaraa.com

 64

 Figure 5-10: Adaptive Method vs. DirectDG2 and Next (Update Factor = 6)

 Figure 5-11: Adaptive Method vs. DirectDG2 and Next (Update Factor = 8)

Adaptive vs. DirectDG2 and Next

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next
Adaptive

Adaptive vs. DirectDG2 and Next

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2
Next
Adaptive

www.manaraa.com

 65

Figure 5-12: Windows - Adaptive Method vs. DirectDG2 and Next (UF = 2)

 Figure 5-13: Windows - Adaptive Method vs. DirectDG2 and Next (UF = 4)

Adaptive vs. DirectDG2 and Next - Windows

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DirectDG2
Next
Adaptive

Adaptive vs. DirectDG2 and Next - Windows

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DirectDG2
Next
Adaptive

www.manaraa.com

 66

 Figure 5-14: Windows - Adaptive Method vs. DirectDG2 and Next (UF = 6)

 Figure 5-15: Windows - Adaptive Method vs. DirectDG2 and Next (UF = 8)

Adaptive vs. DirectDG2 and Next - Windows

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DirectDG2
Next
Adaptive

Adaptive vs. DirectDG2 and Next - Windows

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DirectDG2
Next
Adaptive

www.manaraa.com

 67

 From these figures, we observe that our prediction of which algorithm to use for a

particular model is inaccurate when using a different computer. This is most apparent in

Figure 5-15, where the ideal simulation algorithm for models of size greater than 250

would be the Next method, but the Adaptive Method chooses to continue to use the

DirectDG2 method up to 300 reactions. To fix this, we recommend creating a program

that runs on the computer during installation of the Adaptive Method simulator that

characterizes the performance of the machine and provides a more accurate estimate of

the best update factor threshold.

5.4 Implications

 At this point, some may argue that this work is insignificant because in the future,

modelers will want to run models with such high reaction counts that the Adaptive

Method will always choose to use the Next simulation algorithm. Although this point is

valid, the key to modeling in the future may be to run smaller models exhaustively and

build macromodels that characterize the performance of a specific gene regulatory

networks, then combine these macromodels to form larger models. For this reason, it

may be very useful to have a simulator that runs very quickly for models with a small

reaction count.

5.5 Applying the Adaptive Method to Real Models

 To validate that the Adaptive Method performs well for real models, we now

execute a set of four biological models developed by Dr. Chris Cox at the University of

www.manaraa.com

 68

Tennessee. The first, called ENG, is a model of an engineered bioreporter, consisting of

32 species and 49 reactions. The second model, TB, consists of 17 species and 23

reactions and models tuberculosis. The third model, QS8, is a model of quorum sensing

in eight Vibrio fischeri cells. QS8 consists of 122 species and 201 reactions. The final

model, DIMER, is a simple model of a gene whose protein undergoes dimerization. This

model consists of 8 species and 13 reactions. An SBML descriptions of these models are

supplied in Appendix C.

 The Adaptive, DirectDG2, and Next simulators are run on the same Sun machine

used in chapter 4. Each model is run for 5,000,000 reactions. The results of averaging 4

runs are given in figure 5-16. The data shows that for models DIMER and TB, the

simulator with the smallest execution time is DirectDG2. The data also shows that Next

is the optimal simulator for executing the QS8 and ENG models. As expected, the

Adaptive simulator closely matches this performance of the best performing simulator for

each model. Performing such analysis on real models also helps to validate the

assumptions made when analyzing simulator performance on the artificial model set

generated in chapter 4.

5.6 Conclusion

 By monitoring update factor as the simulation progresses, the Adaptive Method

attempts to select either the DirectDG2 or Next simulation algorithms for predicting the

time-evolution of the chemical species in a particular model. By testing the performance

of the Adaptive Method on the artificial model set developed in chapter 4 and on several

www.manaraa.com

 69

Figure 5-16: Real Model Execution Times

Simulator Execution Times

12.41

10.55

23.62

9.71

11.82

21.30

12.16

11.89

11.98

13.15

12.79

10.04

0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00

ENG

TB

QS8

DIMER
M

od
el

Execution Time (s)

Adaptive
Next
DirectDG2

www.manaraa.com

 70

 real gene regulatory network models, it demonstrates that the Adaptive Method closely

matches the performance of the optimal algorithm. To tune the performance of the

simulator on a particular machine, it is recommended that the software run a suite of

models to determine the points at which the simulator should use a particular algorithm.

www.manaraa.com

 71

Chapter 6

Fast Propensity Calculation

 In this chapter, we investigate another possible technique for accelerating

Gillespie’s stochastic simulation methods by modifying the propensity calculation step to

reduce the number of multiplications that need to be performed per iteration of the

algorithm’s main loop. Several simulators are developed to measure the performance of

this technique and the results are compared to the execution times of the original

Gillespie simulators. Finally, the applicability of this technique is discussed with regards

to accelerating both software and hardware-accelerated simulators.

6.1 Propensity Calculation

 Recall from the discussions of Gillespie’s algorithms in chapter three that in the

First Reaction Method, the reaction propensity is the exponential distribution parameter

used when estimating the putative time for each reaction. In the Direct Method, the

reaction propensity values are summed to produce the total propensity for the entire

chemical system, which is then used to estimate the putative time for the entire system.

In either case, the propensities for each reaction must be recalculated for each iteration of

the algorithm's main loop. Gibson and Bruck’s dependency graph enhancement

significantly reduces the number of propensity calculations that must be performed, but at

least a few propensities still must be recalculated for each loop iteration.

 Calculation of the propensity values is performed by taking the rate constant for

the reaction and multiplying it by the number of possible ways the reaction could occur

www.manaraa.com

 72

given the current populations of the chemical species. Since Gillespie’s methods only

use simple chemical equations consisting of at most two reactants, only three possible

cases exist for the composition of the reactants:

Type 1: A -> Products

Type 2: A + B -> Products

Type 3: A + A -> Products

 To calculate the propensity 1a of a type 1 reaction, we multiply the rate constant

for the reaction k by the current species population of A. This is given in the equation

below.

)()(1 tkAta = (1)

 To calculate the propensity 2a of a type 2 reaction, we multiply the rate constant

for the reaction k by the current species population of A and the current species

population of B. This is because any molecule of A can react with any molecule of B,

therefore by combinatorics, the propensity equation would be

)()()(2 tBtkAta = (2)

 The calculation of the propensity 3a of a type 3 reaction may be expected to look

similar to equation 2, but we must remember that a reaction can not occur between a

www.manaraa.com

 73

given molecule and itself. Therefore we determine the equation for a type 3 reaction

using combinatorics as

2

)1)(()()(3
−

=
tAtkAta (3)

 Using these three equations we can calculate the propensity for a given reaction

based on the current state of the chemical system.

6.2 Fast Propensity Calculation

 To calculate the propensity values more quickly, we notice that for a given system

state we can compute the current propensity values at time t based on the values for the

previous state at time t-t0, where t0 is the putative time of the last reaction executed.

Suppose that at time t-t0, we executed a reaction j that changes the value of the

species population A(t) by some value jA∆ . We could represent this relation using the

following equation.

 jAttAtA ∆+−=)()(0 (4)

Suppose A(t) affected the propensity value of a type 1 reaction i. We could calculate the

propensity of reaction i using equation 1. We could also substitute equation 4 into

equation 1 to give us

www.manaraa.com

 74

))(()(0 jii AttAkta ∆+−= (5)

Rearranging equation 5 and realizing that)()(00 ttAktta ii −=− , we can write the

following equation

 jiii Akttata ∆+−=)()(0 (6)

When using Gibson and Bruck’s enhancements to Gillespie’s methods, we use a

dependency graph to determine the value for jA∆ for each reaction. To utilize fast

propensity calculation we can precompute the value of ji Ak ∆ during this initialization

step and use it to calculate the propensity value of reaction i each time reaction j is

executed. Notice that using equation 6 to calculate the propensity requires that we only

perform a single addition for each iteration of the algorithm, which is more efficient than

the multiplication that would have been performed using equation 1.

 Similarly we can apply this technique to a type 2 chemical equation. In this

scenario, three different situations exist: reaction j could change the value of the species

population A(t) by some value jA∆ , reaction j could change the value of the species

population B(t) by some value jB∆ , or reaction j could change the value of both species

populations. In the first case,

)()(0ttBtB −= (7)

www.manaraa.com

 75

and

 jAttAtA ∆+−=)()(0 (8)

Substituting equations 7 and 8 into equation 2, gives us.

)())(()(00 ttBAttAkta jii −∆+−= (9)

Rearranging equation 9 and realizing that)()()(000 ttBttAktta ii −−=− , we can write the

following equation

)()()(0 tBAkttata jiii ∆+−= (10)

Once again, we can precompute and store the value of jAk∆ during the initialization step.

Using equation 10 to calculate the propensity therefore uses one multiplication and one

addition, instead of two multiplications used by equation 2.

Using a similar derivation, we can determine that in the second case, where the

species population of B changes and the species population of A remains the same during

the execution of reaction j, we can simplify the calculation of the propensity to the

following equation.

www.manaraa.com

 76

)()()(0 tABkttata jiii ∆+−= (11)

Once again we precompute and store the values we can determine during initialization,

jBk∆ and reduce one of the multiplication steps in equation 2 to an addition.

 In the third case, where both the species populations of A and B change because

of the reaction j, we can try to apply the same multiplication reduction techniques, but we

find that we must do the same number of multiplications as we would have using

equation 2. Therefore when both A and B change, we still use equation 2.

 A type 3 chemical reaction can also be reduced by a single multiply. If the

species population of A changes, we get the following equation.

 jAttAtA ∆+−=)()(0 (12)

When we substitute this value into equation 3, we get the following equation.

2

)1)((
))(()(0

0

−∆+−
∆+−= j

jii

AttA
AttAkta (13)

Simplifying this equation, and remembering that

2
)1)(()()(0

0

−−
−=

ttAttAkta ii (14)

www.manaraa.com

 77

we can simplify equation 13 to the following equation.

)(
2

)()()(2

0 jj
i

jiii AAktAAkttata ∆+∆−∆+−= (15)

We can precompute and store the values of ji Ak ∆ and 2/)(2

jj AAk ∆+∆− during

initialization and reduce the one addition and two multiplications using in equation 3 to

two additions and one multiplication.

6.3 Implementation Details

 Because floating point numbers are an approximation of real numbers, subtracting

or adding two values may produce a small error in the least significant digits of the result.

When using equations 6, 10, 11, and 15 to calculate propensity values for species

populations that have recently fallen to zero, the propensity values can become non-zero,

which is incorrect. This error can then cause the simulator to execute a reaction that does

not have a sufficient number of reactants and possibly cause species populations to fall

below zero.

 To avoid this, an implemention of fast propensity calculation should check to

ensure that the reactants’ population values are non-zero. If they are zero, the propensity

value should be immediately set to zero. In the case of a type 3 reaction, if the reactant’s

population value is 1, the propensity value should be set to zero, because this type of

reaction requires the reactant’s population to be at least 2.

www.manaraa.com

 78

6.4 Performance Analysis

 To analyze the performance of this enhancement, two new simulators are coded in

C++ that implement fast propensity calculation. The first simulator is the Next Reaction

Method with Fast Propensity Calculation simulator, or NextFPC, which is derived from

the Next simulator defined in chapter 3. The second simulator is the Direct Method with

Fast Propensity Calculation simulator, or DirectFPC, which is derived from the

DirectDG2 simulator. The performance of these complementary simulators are

compared by executing the same set of model files under the same conditions as the

analysis performed in chapter 4. Plots of these execution times for these simulators are

given in figures 6-1 and 6-2.

 A more effective way to view figures 6-1 and 6-2 would be to plot the speedup,

which is ratio of the execution time of the enhanced simulator (i.e. NextFPC) and the

execution time of the original simulator (i.e. Next). A speedup of greater than 1.0 shows

that the enhancement improves simulator performance and a speedup of less than 1.0

shows that the enhancement degrades simulator performance. Speedup plots are given in

figures 6-3 and 6-4.

 Figures 6-3 and 6-4 show that by using fast propensity calculation, we see no

performance improvement. The several points that show significant speedup are outliers

caused by machine load imbalance. These speedup results are consistent with results

gathered from running models with other update factors. Even though fast propensity

calculation reduces many multiplications to additions, the overhead associated with

storing and retrieving the parameters values required to do fast propensity calculation

outweighs this improvement.

www.manaraa.com

 79

 Figure 6-1: Execution Times for Next and NextFPC (Update Factor = 6)

Figure 6-2: Execution Times for DirectDG2 and DirectFPC (UF = 6)

Next vs. NextFPC

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Next

Next FPC

DirectDG2 vs. DirectFPC

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 100 200 300 400 500 600

Model Size (reactions)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Direct DG2

Direct FPC

www.manaraa.com

 80

DirectDG2 vs. DirectFPC

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 100 200 300 400 500 600

Model Size (reactions)

Sp
ee

du
p

Figure 6-3: Speedup for DirectDG2 vs. DirectFPC (Update Factor = 6)

Next vs. NextFPC

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 100 200 300 400 500 600

Model Size (reactions)

Sp
ee

du
p

Figure 6-4: Speedup for NextFPC vs. Next (Update Factor = 6)

www.manaraa.com

 81

6.5 Implications

 Although the software version of fast propensity calculation shows no significant

gain versus the original simulation algorithms, this work is significant when discussing

the possibility of implementing Gillespie’s algorithms in hardware. New computer

architectures are currently being developed which allow reconfigurable hardware co-

processors to exist near or on the microprocessor with fast interconnect. Because the

reconfigurable hardware devices can be customized and parallelized to meet the specific

need of the software problem, they can demonstrate a significant performance

enhancement over simple microprocessor implementations. These algorithms could be

further accelerated by developing a custom application specific integrated circuit that

performs the algorithm. In both situations, using the fast propensity calculation

techniques described in this chapter could be used to reduce both the size and latency of

the hardware, because an addition module uses less area and delay than a multiplication

module.

6.6 Conclusion

 The fast propensity calculation techniques presented in this chapter are an

effective alternative to the propensity calculation techniques proposed by Gillespie’s

original algorithms. Although these techniques may not show significant performance

improvement for software versions of the simulators, they could be used to reduce the

area and delay of a hardware accelerated version of the simulator significantly.

www.manaraa.com

 82

Chapter 7

Conclusions and Future Work

Gene regulatory networks are the complex chemical interactions between

biochemicals that allow cells to control their behavior and sustain life. A detailed

understanding of gene regulatory networks is critical to the development of new gene

therapy techniques and pharmaceuticals. One tool that has already been successful in

helping to analyze gene regulatory networks is computer modeling. Cell models can be

used to predict cell behavior, validate published results, test treatment strategies, and help

develop nanoscale biological tools.

One of the major factors limiting the widespread use of modeling in the biological

community is the efficiency and accuracy of the algorithms used to simulate such models.

This work has focused on analyzing and enhancing the performance of the exact

stochastic simulation algorithms developed by Gillespie and by Gibson and Bruck.

These techniques are widely accepted as being accurate, but are normally not used

because they are inefficient.

To analyze the performance of the various simulation algorithms, an artificial

model set was developed that allowed the simulators to produce consistent and

predictable performance results. Through this analysis it was discovered that by

modifying Gillespie’s Direct Method, we could outperform the Next Reaction Method for

models with high update factor and low reaction count. This discovery is contrary to the

belief that the Next Reaction Method is the most efficient method for exactly simulating

all stochastic biological models .

www.manaraa.com

 83

 Also through this analysis of the artificial model set, we were able to characterize

the set of models that would perform well for a particular model. To monitor these

factors and adaptively control the simulation algorithm used to simulate a particular

model, the Adaptive Method was developed. This method performed similarly to the best

performing algorithm for each model in the artificial set. To validate the assumptions

made in developing the artificial model set and to validate that the Adaptive Method

performed well under real conditions, a set of actual gene regulatory network models

were analyzed. The performance results showed that the Adaptive Method is an efficient

technique for performing stochastic simulation of coupled chemical reactions.

 In an attempt to further enhance performance, a new technique called Fast

Propensity Calculation was developed to reduce several multiplications to additions.

When implemented, this technique did not show significant performance improvement

over existing methods in software, but it is possible that Fast Propensity Calculation

could be used to reduce the area and delay of custom hardware accelerators for stochastic

simulation. This hardware acceleration approach is an area of further research.

 Further analysis could also be performed to examine adaptively controlling the

PERIOD variable in the Adaptive Method to further improve performance. The Adaptive

Method could also possibly combine the use of new approximate techniques like

Gillespie’s tau-leaping algorithm to further improve performance. Investigations into

using parallel algorithms or distributed computing to accelerate these simulation

algorithms would also be useful.

www.manaraa.com

 84

 The development of the Adaptive Method and Fast Propensity Calculation serve

as additional steps in the creation of an accurate and efficient platform for the

development of computer models for gene regulatory networks.

www.manaraa.com

 85

REFERENCES

www.manaraa.com

 86

References

[1] D. Pederson, “A Historical View of Circuit Simulation,” IEEE Transactions on
Circuits and Systems, vol. 31, pp. 103-111, 1984.

[2] Wall, Hlavacek and Savageau, “Design of gene circuits: Lessons from bacteria,”
Nature Reviews Genetics, vol. 5, pp. 34-42, 2004.

[3] H. De Jong, “Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review,” Journal of Computational Biology, vol. 9, pp. 67-103, 2002.

[4] Endy, D., and R. Brent. 2001. Modeling cellular behaviour. Nature, vol. 409, pp.
391-395.

[5] D. Gillespie, “Exact Stochastic Simulation of Coupled Chemical Reactions,” Journal
of Physical Chemistry, vol. 81, pp. 2340-2361, 1977.

[6] M. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation of Chemical Systems
with Many Species and Many Channels,” Journal of Physical Chemistry A, vol. 104, pp.
1876-1889, 2000.

[7] K. Talaro and A. Talaro, Foundations in Microbiology: Basic Principles. Boston:
McGraw Hill, 2002.

[8] T. Brock, D. Smith, and M. Madigan, Biology of Microorganisms. Englewood Cliffs:
Prentice Hall, 1984.

[9] J. Setubal and J Meidanis, Introduction to Computational Molecular Biology.
Boston: PWS, 1997.

[10] S. James, P. Nilsson, G. James, S. Kjelleberg, and T. Fagerstrom, "Luminescence
Control in the Marine Bacterium Vibrio fischeri: An Analysis of the Dynamics of lux
Regulation," Journal of Molecular Biology, vol. 296, pp. 1127-1137, 2000.

[11] J. Dockery and J. Kenner, “A mathematical model for quorum sensing in
Pseudomonas aeruginosa,” Bulletin of Mathematical Biology, vol. 63, pp. 95-116, 2001.

[12] G. Marlovits, C. J. Tyson, B. Novak and J. J. Tyson, “Modeling M-phase control in
Xenopus oocyte extracts: the surveillance mechanism for unreplicated DNA,”
Biophysical Chemistry, vol. 72, pp. 169-184, 1998.

[13] B. Novak and J. J. Tyson. “Modeling the Cell-Division Cycle - M-Phase Trigger,
Oscillations, and Size Control,” Journal of Theoretical Biology, vol. 165, pp. 101-134,
1993.

www.manaraa.com

 87

[14] W. Sha, J. Moore, K. Chen, A. D. Lassaletta, C. S. Yi, J. J. Tyson, and J. C. Sible,
“Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts,” Proceedings of
the National Academy of Sciences of the United States of America, vol. 100, pp. 975-980,
2003

[15] A. Arkin, J. Ross, and H. H. McAdams, “Stochastic kinetic analysis of
developmental pathway bifurcation in phage lambda-infected Escherichia coli cells,”
Genetics, vol. 149, pp. 1633-1648, 1998.

[16] C. D. Cox, G. D. Peterson, M. S. Allen, J. M. Lancaster, J. M. McCollum, D. Austin,
L. Yan, G. S. Sayler, and M. L. Simpson, “Analysis of Noise in Quorum Sensing,”
OMICS: A Journal of Integrative Biology, vol. 9, pp. 317-334, 2003.

[17] Endy, D., D. Kong, and J. Yin, “Intracellular kinetics of a growing virus: A
genetically structured simulation for bacteriophage T7,” Biotechnology and
Bioengineering, vol. 55, pp. 375-389, 1997.

[18] D. Rapaport, The Art of Molecular Dynamics Simulation. Cambridge: Cambridge
Press, 1995.

[19] M. Allen and D. Tildesley, Computer Simulation of Liquids. Oxford: Clarendon
Press, 1987.

[20] D. Gillespie, “Approximate accelerated stochastic simulation of chemically reacting
systems,” Journal of Chemical Physics, vol. 115, pp. 1716-1733, 2001.

[21] D. Gillespie and L. Petzold, “Improved leap-size selection for accelerated stochastic
simulation,” Journal of Chemical Physics, vol. 119, pp. 8229-8234, 2003.

www.manaraa.com

 88

APPENDICES

www.manaraa.com

 89

Appendix A – Simulator Source Code

The following pages include the source code used to generate each of the simulators.

www.manaraa.com

 90

Adaptive.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"
#include "DependencyGraph.h"
#include "MinHeap.h"
#include <iostream>

using namespace std;

#define NEXT 1
#define DIRECT 2

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);
 DependencyGraph dependencyGraph(model);
 MinHeap minHeap;

 double currentTime = 0.0;
 double *propensities = new double[model.reactionCount];
 double *putativeTimes = new double[model.reactionCount];
 double totalPropensity = 0.0;
 int i;
 long reactionCount = 0;
 long updateCount = 0;
 int selectedReaction;

 double updateFactorThreshold = ((double)(model.reactionCount-
60))/30.0/2.0;
 int mode = NEXT;

 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 putativeTimes[i] = random.getExponential()/propensities[i];
 minHeap.add(putativeTimes[i]);
 }

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 if (mode == DIRECT) {
 double scaledRand = totalPropensity * random.getUniform();
 for(i=0; i<model.reactionCount; i++) {
 if (propensities[i] != 0.0) {
 selectedReaction = i;
 scaledRand -= propensities[i];
 if (scaledRand <= 0.0) break;
 }
 }

 model.reactions[selectedReaction].execute();

www.manaraa.com

 91

 currentTime += random.getExponential()/totalPropensity;

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 updateCount += dependencies->size();
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 totalPropensity -= propensities[index];
 propensities[index] = model.reactions[index].getPropensity();
 totalPropensity += propensities[index];
 }
 } else {
 selectedReaction = minHeap.getMin();

 model.reactions[selectedReaction].execute();

 currentTime = putativeTimes[selectedReaction];

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 updateCount += dependencies->size();
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 double oldPropensity = propensities[index];
 propensities[index] = model.reactions[index].getPropensity();
 if (index != selectedReaction) {
 if (oldPropensity == 0.0) {
 putativeTimes[index] = currentTime +
random.getExponential()/propensities[index];
 } else {
 putativeTimes[index] = currentTime + oldPropensity /
propensities[index] * (putativeTimes[index] - currentTime);
 }
 minHeap.update(index,putativeTimes[index]);
 }
 }
 putativeTimes[selectedReaction] = currentTime +
random.getExponential()/propensities[selectedReaction];
 minHeap.update(selectedReaction,putativeTimes[selectedReaction]);
 }

 if (parameters.output) model.printState(currentTime);

 reactionCount++;
 if (reactionCount == 5000) {
 double updateFactor =
(double)updateCount/(double)reactionCount/2.0;

 if ((updateFactor > updateFactorThreshold) && (mode == NEXT)) {
 mode = DIRECT;
 totalPropensity = 0.0;
 for(i=0; i<model.reactionCount; i++) {
 totalPropensity += propensities[i];
 }

www.manaraa.com

 92

 } else if ((updateFactor < updateFactorThreshold) && (mode ==
DIRECT)) {
 mode = NEXT;
 for(i=0; i<model.reactionCount; i++) {
 putativeTimes[i] = currentTime +
random.getExponential()/propensities[i];
 minHeap.update(i,putativeTimes[i]);
 }
 }

 updateCount = 0;
 reactionCount = 0;
 }
 }
}

www.manaraa.com

 93

DependencyGraph.h

#ifndef DEPENDENCYGRAPH_H
#define DEPENDENCYGRAPH_H

#include "IntVector.h"
#include "Model.h"

class DependencyGraph {
 private:
 IntVector *dependencies;

 public:
 DependencyGraph(const Model &model);
 IntVector* getDependencies(int reactionIndex);
};

#endif

www.manaraa.com

 94

DependencyGraph.cc

#include "DependencyGraph.h"

DependencyGraph::DependencyGraph(const Model &model) {
 dependencies = new IntVector[model.reactionCount];

 for(int i=0; i<model.reactionCount; i++) {
 Reaction *reaction1 = &model.reactions[i];
 for(int j=0; j<model.reactionCount; j++) {
 Reaction *reaction2 = &model.reactions[j];
 for(int k=0; k<reaction1->reactantCount; k++) {
 int reactantIndex = reaction1->reactants[k].speciesIndex;
 int change = 0;
 int z;
 for(z=0; z<reaction2->reactantCount; z++) {
 if (reaction2->reactants[z].speciesIndex == reactantIndex) {
 change -= reaction2->reactants[z].coefficient;
 }
 }
 for(z=0; z<reaction2->productCount; z++) {
 if (reaction2->products[z].speciesIndex == reactantIndex) {
 change += reaction2->products[z].coefficient;
 }
 }
 if (change != 0) {
 dependencies[j].add(i);
 break;
 }
 }
 }
 }
}

IntVector* DependencyGraph::getDependencies(int reactionIndex) {
 return &dependencies[reactionIndex];
}

www.manaraa.com

 95

Direct.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);

 double currentTime = 0.0;
 double *propensities = new double[model.reactionCount];
 double totalPropensity = 0.0;
 int i;

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 totalPropensity = 0.0;
 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 totalPropensity += propensities[i];
 }

 double scaledRand = totalPropensity * random.getUniform();
 int selectedReaction = -1;
 for(i=0; i<model.reactionCount; i++) {
 if (propensities[i] != 0.0) {
 selectedReaction = i;
 scaledRand -= propensities[i];
 if (scaledRand <= 0.0) break;
 }
 }

 model.reactions[selectedReaction].execute();
 currentTime += random.getExponential()/totalPropensity;

 if (parameters.output) model.printState(currentTime);
 }
}

www.manaraa.com

 96

DirectDG.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"
#include "DependencyGraph.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);
 DependencyGraph dependencyGraph(model);

 double currentTime = 0.0;
 double *propensities = new double[model.reactionCount];
 double totalPropensity = 0.0;
 int i;

 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 }

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 totalPropensity = 0.0;
 for(i=0; i<model.reactionCount; i++) {
 totalPropensity += propensities[i];
 }

 double scaledRand = totalPropensity * random.getUniform();
 int selectedReaction = -1;
 for(i=0; i<model.reactionCount; i++) {
 if (propensities[i] != 0.0) {
 selectedReaction = i;
 scaledRand -= propensities[i];
 if (scaledRand <= 0.0) break;
 }
 }

 model.reactions[selectedReaction].execute();
 currentTime += random.getExponential()/totalPropensity;

 if (parameters.output) model.printState(currentTime);

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 propensities[index] = model.reactions[index].getPropensity();
 }
 }
}

www.manaraa.com

 97

DirectDG2.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"
#include "DependencyGraph.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);
 DependencyGraph dependencyGraph(model);

 double currentTime = 0.0;
 double *propensities = new double[model.reactionCount];
 double totalPropensity = 0.0;
 int i;

 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 totalPropensity += propensities[i];
 }

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 double scaledRand = totalPropensity * random.getUniform();
 int selectedReaction = -1;
 for(i=0; i<model.reactionCount; i++) {
 if (propensities[i] != 0.0) {
 selectedReaction = i;
 scaledRand -= propensities[i];
 if (scaledRand <= 0.0) break;
 }
 }

 model.reactions[selectedReaction].execute();
 currentTime += random.getExponential()/totalPropensity;

 if (parameters.output) model.printState(currentTime);

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 totalPropensity -= propensities[index];
 propensities[index] = model.reactions[index].getPropensity();
 totalPropensity += propensities[index];
 }
 }
}

www.manaraa.com

 98

DirectFPC.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"
#include "DependencyGraph.h"
#include "FastPropensity.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);
 DependencyGraph dependencyGraph(model);

 double currentTime = 0.0;
 double *propensities = new double[model.reactionCount];
 FastPropensity fastPropensity(model,propensities,&dependencyGraph);
 double totalPropensity = 0.0;
 int i;

 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 totalPropensity += propensities[i];
 }

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 double scaledRand = totalPropensity * random.getUniform();
 int selectedReaction = -1;
 for(i=0; i<model.reactionCount; i++) {
 if (propensities[i] != 0.0) {
 selectedReaction = i;
 scaledRand -= propensities[i];
 if (scaledRand <= 0.0) break;
 }
 }

 model.reactions[selectedReaction].execute();
 currentTime += random.getExponential()/totalPropensity;

 if (parameters.output) model.printState(currentTime);

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 fastPropensity.update(selectedReaction,i,&totalPropensity);
 }
 }
}

www.manaraa.com

 99

EfficientDirect.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"
#include "DependencyGraph.h"
#include "SumTree.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);
 DependencyGraph dependencyGraph(model);
 SumTree sumTree(model.reactionCount);

 double currentTime = 0.0;
 double *propensities = new double[model.reactionCount];
 double totalPropensity = 0.0;
 int i;

 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 sumTree.update(i,propensities[i]);
 }

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 totalPropensity = sumTree.getSum();
 double scaledRand = totalPropensity * random.getUniform();
 int selectedReaction = sumTree.selectReaction(scaledRand);
 model.reactions[selectedReaction].execute();
 currentTime += random.getExponential()/totalPropensity;

 if (parameters.output) model.printState(currentTime);

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 propensities[index] = model.reactions[index].getPropensity();
 sumTree.update(index,propensities[index]);
 }
 }
}

www.manaraa.com

 100

FastPropensity.h

#ifndef FASTPROPENSITY_H
#define FASTPROPENSITY_H

#include "FastPropensityEntry.h"
#include "Model.h"
#include "DependencyGraph.h"

class FastPropensity {
 private:
 FastPropensityEntry ***data;
 int *entryCount;
 DependencyGraph *dependencyGraph;

 public:
 FastPropensity(const Model &model, double *propensities,
DependencyGraph *dependencyGraph);
 void update(int selectedReaction, int index);
 void update(int selectedReaction, int index, double
*totalPropensity);
};

#endif

www.manaraa.com

 101

FastPropensity.cc

#include "FastPropensity.h"
#include "DependencyGraph.h"

FastPropensity::FastPropensity(const Model &model, double
*propensities, DependencyGraph *dependencyGraph) {
 int i,j;
 data = new (FastPropensityEntry **)[model.reactionCount];
 entryCount = new int[model.reactionCount];
 for(i=0; i<model.reactionCount; i++) {
 IntVector *dependencies = dependencyGraph->getDependencies(i);
 data[i] = new (FastPropensityEntry *)[dependencies->size()];
 entryCount[i] = dependencies->size();
 for(j=0; j<dependencies->size(); j++) {
 data[i][j] = new
FastPropensityEntry(&model.reactions[i],&model.reactions[dependencies-
>get(j)],&propensities[dependencies->get(j)]);
 }
 }
}

void FastPropensity::update(int selectedReaction, int index) {
 data[selectedReaction][index]->execute();
}

void FastPropensity::update(int selectedReaction, int index, double
*totalPropensity) {
 data[selectedReaction][index]->execute(totalPropensity);
}

www.manaraa.com

 102

FastPropensityEntry.h

#ifndef FASTPROPENSITYENTRY_H
#define FASTPROPENSITYENTRY_H

#include "Reaction.h"

class FastPropensityEntry {
 private:
 int type;
 double *propensity;
 Reaction *reaction;
 long *species1;
 long *species2;
 double alpha;
 double beta;

 public:
 FastPropensityEntry(Reaction *executedReaction,
 Reaction *affectedReaction,
 double *propensityValue);
 void execute();
 void execute(double *totalPropensity);
};

#endif

www.manaraa.com

 103

FastPropensityEntry.cc

#include "FastPropensityEntry.h"
#include <stdlib.h>

FastPropensityEntry::FastPropensityEntry(Reaction *executedReaction,
 Reaction *affectedReaction,
 double *propensityValue) {
 reaction = affectedReaction;
 propensity = propensityValue;

 if (affectedReaction->reactantCount == 1) {
 if (affectedReaction->reactants[0].coefficient == 1) {
 type = 1;
 species1 = affectedReaction->reactants[0].species;
 int delta = executedReaction->getDelta(affectedReaction-
>reactants[0].speciesIndex);
 alpha = affectedReaction->rate*delta;
 } else if (affectedReaction->reactants[0].coefficient == 2) {
 type = 5;
 species1 = affectedReaction->reactants[0].species;
 int delta = executedReaction->getDelta(affectedReaction-
>reactants[0].speciesIndex);
 alpha = affectedReaction->rate*delta;
 beta = -affectedReaction->rate/2.0*(delta*delta+delta);
 } else {
 type = 4;
 }
 } else if (affectedReaction->reactantCount == 2) {
 if ((affectedReaction->reactants[0].coefficient != 1) ||
 (affectedReaction->reactants[1].coefficient != 1)) {
 type = 4;
 } else {
 int delta1 = executedReaction->getDelta(affectedReaction-
>reactants[0].speciesIndex);
 int delta2 = executedReaction->getDelta(affectedReaction-
>reactants[1].speciesIndex);
 if ((delta1 != 0) && (delta2 == 0)) {
 type = 2;
 species1 = affectedReaction->reactants[0].species;
 species2 = affectedReaction->reactants[1].species;
 alpha = affectedReaction->rate*delta1;
 } else if ((delta1 == 0) && (delta2 != 0)) {
 type = 3;
 species1 = affectedReaction->reactants[0].species;
 species2 = affectedReaction->reactants[1].species;
 alpha = affectedReaction->rate*delta2;
 } else {
 type = 4;
 }
 }
 } else {
 type = 4;
 }

www.manaraa.com

 104

}

void FastPropensityEntry::execute() {
 if (type == 1) {
 *propensity = *propensity + alpha;
 } else if (type == 2) {
 *propensity = *propensity + alpha*(*species2);
 } else if (type == 3) {
 *propensity = *propensity + alpha*(*species1);
 } else if (type == 4) {
 *propensity = reaction->getPropensity();
 } else {
 *propensity = *propensity + alpha*(*species1) + beta;
 }
}

void FastPropensityEntry::execute(double *totalPropensity) {
 if (type == 1) {
 *propensity += alpha;
 *totalPropensity += alpha;
 } else if (type == 2) {
 double delta = alpha*(*species2);
 *propensity += delta;
 *totalPropensity += delta;
 } else if (type == 3) {
 double delta = alpha*(*species1);
 *propensity += delta;
 *totalPropensity += delta;
 } else if (type == 4) {
 *totalPropensity -= *propensity;
 *propensity = reaction->getPropensity();
 *totalPropensity += *propensity;
 } else {
 double delta = alpha*(*species1) + beta;
 *propensity += delta;
 *totalPropensity += delta;
 }
}

www.manaraa.com

 105

First.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);

 double currentTime = 0.0;
 double putativeTime;
 double temp;
 int selectedReaction;
 int i;

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 putativeTime =
random.getExponential()/model.reactions[0].getPropensity();
 selectedReaction = 0;
 for(i=0; i<model.reactionCount; i++) {
 temp =
random.getExponential()/model.reactions[i].getPropensity();
 if (temp < putativeTime) {
 putativeTime = temp;
 selectedReaction = i;
 }
 }

 model.reactions[selectedReaction].execute();
 currentTime += putativeTime;

 if (parameters.output) model.printState(currentTime);
 }
}

www.manaraa.com

 106

FirstDG.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"
#include "DependencyGraph.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);
 DependencyGraph dependencyGraph(model);

 double currentTime = 0.0;
 double *propensities = new double[model.reactionCount];
 double putativeTime;
 double temp;
 int selectedReaction;
 int i;

 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 }

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 putativeTime = random.getExponential()/propensities[0];
 selectedReaction = 0;
 for(i=0; i<model.reactionCount; i++) {
 temp = random.getExponential()/propensities[i];
 if (temp < putativeTime) {
 putativeTime = temp;
 selectedReaction = i;
 }
 }

 model.reactions[selectedReaction].execute();
 currentTime += putativeTime;

 if (parameters.output) model.printState(currentTime);

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 propensities[index] = model.reactions[index].getPropensity();
 }
 }
}

www.manaraa.com

 107

IntVector.h

#ifndef INTVECTOR_H
#define INTVECTOR_H

class IntVector {
 private:
 int *data;
 int count;

 public:
 IntVector();
 void add(int value);
 int size() const;
 int get(int index) const;
};

#endif

www.manaraa.com

 108

IntVector.cc

#include "IntVector.h"
#include <stdlib.h>

IntVector::IntVector() {
 count = 0;
 data = NULL;
}

void IntVector::add(int value) {
 int *temp = new int[count+1];
 for(int i=0; i<count; i++) {
 temp[i] = data[i];
 }
 temp[count] = value;
 if (data != NULL) delete data;
 data = temp;
 count++;
}

int IntVector::size() const {
 return count;
}

int IntVector::get(int index) const {
 return data[index];
}

www.manaraa.com

 109

makefile

all: bin/PrintModel bin/Direct bin/First bin/DirectDG bin/FirstDG
bin/DirectDG2 bin/Next bin/EfficientDirect bin/NextFPC bin/DirectFPC
bin/Adaptive

bin/EfficientDirect: EfficientDirect.cc SpeciesUpdate.o Reaction.o
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o SumTree.o
 c++ -O3 -o bin/EfficientDirect EfficientDirect.cc SpeciesUpdate.o
Reaction.o Model.o Parameters.o Random.o IntVector.o DependencyGraph.o
SumTree.o

bin/Next: Next.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o
Random.o IntVector.o DependencyGraph.o MinHeap.o
 c++ -O3 -o bin/Next Next.cc SpeciesUpdate.o Reaction.o Model.o
Parameters.o Random.o IntVector.o DependencyGraph.o MinHeap.o

bin/Adaptive: Adaptive.cc SpeciesUpdate.o Reaction.o Model.o
Parameters.o Random.o IntVector.o DependencyGraph.o MinHeap.o
 c++ -O3 -o bin/Adaptive Adaptive.cc SpeciesUpdate.o Reaction.o
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o MinHeap.o

bin/DirectDG2: DirectDG2.cc SpeciesUpdate.o Reaction.o Model.o
Parameters.o Random.o IntVector.o DependencyGraph.o
 c++ -O3 -o bin/DirectDG2 DirectDG2.cc SpeciesUpdate.o Reaction.o
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o

bin/DirectDG: DirectDG.cc SpeciesUpdate.o Reaction.o Model.o
Parameters.o Random.o IntVector.o DependencyGraph.o
 c++ -O3 -o bin/DirectDG DirectDG.cc SpeciesUpdate.o Reaction.o
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o

bin/FirstDG: FirstDG.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o
Random.o IntVector.o DependencyGraph.o
 c++ -O3 -o bin/FirstDG FirstDG.cc SpeciesUpdate.o Reaction.o
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o

bin/NextFPC: NextFPC.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o
Random.o IntVector.o DependencyGraph.o FastPropensityEntry.o
FastPropensity.o MinHeap.o
 c++ -O3 -o bin/NextFPC NextFPC.cc SpeciesUpdate.o Reaction.o
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o
FastPropensityEntry.o FastPropensity.o MinHeap.o

bin/DirectFPC: DirectFPC.cc SpeciesUpdate.o Reaction.o Model.o
Parameters.o Random.o IntVector.o DependencyGraph.o
FastPropensityEntry.o FastPropensity.o
 c++ -O3 -o bin/DirectFPC DirectFPC.cc SpeciesUpdate.o Reaction.o
Model.o Parameters.o Random.o IntVector.o DependencyGraph.o
FastPropensityEntry.o FastPropensity.o

bin/Direct: Direct.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o
Random.o

www.manaraa.com

 110

 c++ -O3 -o bin/Direct Direct.cc SpeciesUpdate.o Reaction.o
Model.o Parameters.o Random.o

bin/First: First.cc SpeciesUpdate.o Reaction.o Model.o Parameters.o
Random.o
 c++ -O3 -o bin/First First.cc SpeciesUpdate.o Reaction.o Model.o
Parameters.o Random.o

bin/PrintModel: PrintModel.cc SpeciesUpdate.o Reaction.o Model.o
 c++ -O3 -o bin/PrintModel PrintModel.cc SpeciesUpdate.o
Reaction.o Model.o

SumTree.o: SumTree.h SumTree.cc
 c++ -O3 -o SumTree.o -c SumTree.cc

IntVector.o: IntVector.h IntVector.cc
 c++ -O3 -o IntVector.o -c IntVector.cc

DependencyGraph.o: DependencyGraph.h DependencyGraph.cc IntVector.h
 c++ -O3 -o DependencyGraph.o -c DependencyGraph.cc

MinHeap.o: MinHeap.h MinHeap.cc
 c++ -O3 -o MinHeap.o -c MinHeap.cc

Random.o: Random.h Random.cc
 c++ -O3 -o Random.o -c Random.cc

Parameters.o: Parameters.h Parameters.cc
 c++ -O3 -o Parameters.o -c Parameters.cc

SpeciesUpdate.o: SpeciesUpdate.h SpeciesUpdate.cc
 c++ -O3 -o SpeciesUpdate.o -c SpeciesUpdate.cc

Reaction.o: Reaction.h Reaction.cc SpeciesUpdate.h
 c++ -O3 -o Reaction.o -c Reaction.cc

Model.o: Model.h Model.cc Reaction.h
 c++ -O3 -o Model.o -c Model.cc

FastPropensityEntry.o: FastPropensityEntry.h FastPropensityEntry.cc
Reaction.h
 c++ -O3 -o FastPropensityEntry.o -c FastPropensityEntry.cc

FastPropensity.o: FastPropensity.h FastPropensity.cc
FastPropensityEntry.h Model.h DependencyGraph.h
 c++ -O3 -o FastPropensity.o -c FastPropensity.cc

www.manaraa.com

 111

MinHeap.h

#ifndef MINHEAP_H
#define MINHEAP_H

class MinHeap {
 private:
 class Node;

 public:
 MinHeap();
 ~MinHeap();
 int add(double value);
 void update(int id, double value);
 int getMin() const;

 private:
 void add(Node *n, Node *tree);
 void swap(int id1, int id2);
 void update_aux(Node *n);
 int nodeCount(Node *tree) const;

 private:
 Node *d_top;
 int d_nodeCount;
 Node **d_nodes;
};

class MinHeap::Node {
 public:
 Node *left;
 Node *right;
 Node *parent;
 double value;
 int id;
};

#endif

www.manaraa.com

 112

MinHeap.cc

#include "MinHeap.h"
#include <sstream>

MinHeap::MinHeap() {
 d_top = NULL;
 d_nodeCount = 0;
}

MinHeap::~MinHeap() {
 int i;
 for (i=0; i<d_nodeCount; i++) {
 delete d_nodes[i];
 }
}

int MinHeap::add(double value) {
 Node *n = new Node();
 n->id = d_nodeCount;
 n->value = value;
 n->left = NULL;
 n->right = NULL;
 n->parent = NULL;

 Node **temp = new (Node *)[d_nodeCount+1];
 for(int i=0; i<d_nodeCount; i++) {
 temp[i] = d_nodes[i];
 }
 temp[d_nodeCount] = n;
 if (d_nodeCount != 0) {
 delete d_nodes;
 }
 d_nodes = temp;
 d_nodeCount++;

 if (d_top == NULL) {
 d_top = n;
 } else {
 add(n,d_top);
 }
 return d_nodeCount-1;
}

void MinHeap::update(int id, double value) {
 d_nodes[id]->value = value;
 update_aux(d_nodes[id]);
}

int MinHeap::getMin() const {
 return d_top->id;
}

void MinHeap::update_aux(Node *n) {

www.manaraa.com

 113

 if ((n->parent != NULL) && (n->value < n->parent->value)) {
 swap(n->id,n->parent->id);
 update_aux(n->parent);
 }

 Node *minchild = NULL;
 if ((n->left != NULL) && (n->right != NULL)) {
 if (n->left->value < n->right->value) {
 minchild = n->left;
 } else {
 minchild = n->right;
 }
 } else if (n->left != NULL) {
 minchild = n->left;
 } else if (n->right != NULL) {
 minchild = n->right;
 } else {
 return;
 }

 if (minchild->value < n->value) {
 swap(minchild->id,n->id);
 update_aux(minchild);
 }
}

int MinHeap::nodeCount(Node *tree) const {
 if (tree == NULL) {
 return 0;
 } else {
 return 1+nodeCount(tree->left)+nodeCount(tree->right);
 }
}

void MinHeap::add(Node *n, Node *tree) {
 if (tree->left == NULL) {
 tree->left = n;
 n->parent = tree;
 update(n->id,n->value);
 return;
 }
 if (tree->right == NULL) {
 tree->right = n;
 n->parent = tree;
 update(n->id,n->value);
 return;
 }
 int leftCount = nodeCount(tree->left);
 int rightCount = nodeCount(tree->right);
 if (leftCount <= rightCount) {
 add(n,tree->left);
 } else {
 add(n,tree->right);
 }
}

www.manaraa.com

 114

void MinHeap::swap(int id1, int id2) {
 double temp = d_nodes[id1]->value;
 d_nodes[id1]->value = d_nodes[id2]->value;
 d_nodes[id2]->value = temp;
 d_nodes[id1]->id = id2;
 d_nodes[id2]->id = id1;
 Node *n = d_nodes[id1];
 d_nodes[id1] = d_nodes[id2];
 d_nodes[id2] = n;
}

www.manaraa.com

 115

Model.h

#ifndef MODEL_H
#define MODEL_H

#include "Reaction.h"

class Model {
 public:
 long *species;
 Reaction *reactions;
 int speciesCount;
 int reactionCount;

 Model(char *filename);
 void output() const;
 void printState(double currentTime) const;
};

#endif

www.manaraa.com

 116

Model.cc

#include <iostream>
#include <fstream>
#include "Model.h"

using namespace std;

Model::Model(char *filename) {
 int i,j;
 ifstream in;
 in.open(filename);

 in >> speciesCount;
 species = new long[speciesCount];
 for(i=0; i<speciesCount; i++) {
 in >> species[i];
 }

 in >> reactionCount;
 reactions = new Reaction[reactionCount];
 for(i=0; i<reactionCount; i++) {
 Reaction *reaction = &reactions[i];
 in >> reaction->reactantCount;
 reaction->reactants = new SpeciesUpdate[reaction->reactantCount];
 for(j=0; j<reaction->reactantCount; j++) {
 SpeciesUpdate *reactant = &reaction->reactants[j];
 in >> reactant->coefficient;
 in >> reactant->speciesIndex;
 reactant->species = &species[reactant->speciesIndex];
 }
 in >> reaction->productCount;
 reaction->products = new SpeciesUpdate[reaction->productCount];
 for(j=0; j<reaction->productCount; j++) {
 SpeciesUpdate *product = &reaction->products[j];
 in >> product->coefficient;
 in >> product->speciesIndex;
 product->species = &species[product->speciesIndex];
 }
 in >> reaction->rate;
 }
}

void Model::output() const {
 int i;
 for(i=0; i<speciesCount; i++) {
 cout << "s" << i << ": " << species[i] << endl;
 }
 for(i=0; i<reactionCount; i++) {
 reactions[i].output();
 cout << endl;
 }
}

www.manaraa.com

 117

void Model::printState(double currentTime) const {
 cout << currentTime;
 for(int i=0; i<speciesCount; i++) {
 cout << " " << species[i];
 }
 cout << endl;
}

www.manaraa.com

 118

Next.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"
#include "DependencyGraph.h"
#include "MinHeap.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);
 DependencyGraph dependencyGraph(model);
 MinHeap minHeap;

 double currentTime = 0.0;
 double *propensities = new double[model.reactionCount];
 double *putativeTimes = new double[model.reactionCount];
 int selectedReaction;
 int i;

 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 putativeTimes[i] = random.getExponential()/propensities[i];
 minHeap.add(putativeTimes[i]);
 }

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 selectedReaction = minHeap.getMin();
 model.reactions[selectedReaction].execute();
 currentTime = putativeTimes[selectedReaction];
 if (parameters.output) model.printState(currentTime);

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 double oldPropensity = propensities[index];
 propensities[index] = model.reactions[index].getPropensity();
 if (index != selectedReaction) {
 if (oldPropensity == 0.0) {
 putativeTimes[index] = currentTime +
random.getExponential()/propensities[index];
 } else {
 putativeTimes[index] = currentTime + oldPropensity /
propensities[index] * (putativeTimes[index] - currentTime);
 }
 minHeap.update(index,putativeTimes[index]);
 }
 }

 putativeTimes[selectedReaction] = currentTime +
random.getExponential()/propensities[selectedReaction];

www.manaraa.com

 119

 minHeap.update(selectedReaction,putativeTimes[selectedReaction]);
 }
}

www.manaraa.com

 120

NextFPC.cc

#include "Model.h"
#include "Parameters.h"
#include "Random.h"
#include "DependencyGraph.h"
#include "MinHeap.h"
#include "FastPropensity.h"

int main(int argc,char **argv) {
 Parameters parameters(argc,argv);
 Random random(parameters.seed);
 Model model(parameters.filename);
 DependencyGraph dependencyGraph(model);
 MinHeap minHeap;

 double *propensities = new double[model.reactionCount];
 FastPropensity fastPropensity(model,propensities,&dependencyGraph);
 double *putativeTimes = new double[model.reactionCount];
 int selectedReaction;
 int i;
 double currentTime = 0.0;

 for(i=0; i<model.reactionCount; i++) {
 propensities[i] = model.reactions[i].getPropensity();
 putativeTimes[i] = random.getExponential()/propensities[i];
 minHeap.add(putativeTimes[i]);
 }

 if (parameters.output) model.printState(currentTime);
 for(; parameters.reactions > 0; parameters.reactions--) {
 selectedReaction = minHeap.getMin();
 model.reactions[selectedReaction].execute();
 currentTime = putativeTimes[selectedReaction];
 if (parameters.output) model.printState(currentTime);

 IntVector *dependencies =
dependencyGraph.getDependencies(selectedReaction);
 for(i=0; i<dependencies->size(); i++) {
 int index = dependencies->get(i);
 double oldPropensity = propensities[index];
 fastPropensity.update(selectedReaction,i);
 if (index != selectedReaction) {
 if (oldPropensity == 0.0) {
 putativeTimes[index] = currentTime +
random.getExponential()/propensities[index];
 } else {
 putativeTimes[index] = currentTime + oldPropensity /
propensities[index] * (putativeTimes[index] - currentTime);
 }
 minHeap.update(index,putativeTimes[index]);
 }
 }

www.manaraa.com

 121

 putativeTimes[selectedReaction] = currentTime +
random.getExponential()/propensities[selectedReaction];
 minHeap.update(selectedReaction,putativeTimes[selectedReaction]);
 }
}

www.manaraa.com

 122

Parameters.h

#ifndef PARAMETERS_H
#define PARAMETERS_H

class Parameters {
 public:
 bool output;
 long reactions;
 char *filename;
 long seed;

 Parameters(int argc, char **argv);
 void printUsage(char *executableName);
};

#endif

www.manaraa.com

 123

Parameters.cc

#include "Parameters.h"
#include <stdlib.h>
#include <iostream>

using namespace std;

Parameters::Parameters(int argc, char **argv) {
 output = false;
 reactions = -1;
 filename = NULL;
 seed = 1;

 for(int i=1; i<argc; i++) {
 if (strcmp(argv[i],"-o") == 0) {
 output = true;
 } else if (strcmp(argv[i],"-i") == 0) {
 filename = argv[++i];
 } else if (strcmp(argv[i],"-seed") == 0) {
 seed = strtol(argv[++i],NULL,10);
 } else if (strcmp(argv[i],"-rxns") == 0) {
 reactions = strtol(argv[++i],NULL,10);
 } else {
 cout << "Invalid switch: " << argv[i] << endl;
 printUsage(argv[0]);
 }
 }

 if (filename == NULL) {
 cout << "Input model not specified." << endl;
 printUsage(argv[0]);
 }

 if (reactions == -1) {
 cout << "Reaction count not specified." << endl;
 printUsage(argv[0]);
 }
}

void Parameters::printUsage(char *executableName) {
 cout << "usage: " << executableName << " [-o] [-seed <seed>] -i
<model> -rxns <reactionCount>" << endl;
 exit(1);
}

www.manaraa.com

 124

PrintModel.cc

#include "Model.h"
#include <iostream>

using namespace std;

int main(int argc, char** argv) {
 if (argc != 2) {
 cout << "usage: PrintModel <filename>" << endl;
 }
 Model model(argv[1]);
 model.output();
}

www.manaraa.com

 125

Random.h

#ifndef RANDOM_H
#define RANDOM_H

class Random {
 private:
 unsigned long myrand;

 public:
 Random(long seed);
 double getUniform();
 double getExponential();
};

#endif

www.manaraa.com

 126

Random.cc

#include <math.h>
#include "Random.h"

Random::Random(long seed) {
 myrand = (unsigned long)seed;
}

double Random::getUniform() {
 myrand = myrand * 0x41c64e6d + 0x3039;
 long temp = myrand & 0x7fffffff;
 return (double)temp/2147483647.0;
}

double Random::getExponential() {
 double temp = getUniform();
 while (temp == 0.0) {
 temp = getUniform();
 }
 return -log(temp);
}

www.manaraa.com

 127

Reaction.h

#ifndef REACTION_H
#define REACTION_H

#include "SpeciesUpdate.h"

class Reaction {
 public:
 int reactantCount;
 int productCount;
 SpeciesUpdate *reactants;
 SpeciesUpdate *products;
 double rate;

 void output() const;
 void execute();
 double getPropensity() const;
 int getDelta(int speciesIndex) const;
};

#endif

www.manaraa.com

 128

Reaction.cc

#include <iostream>
#include "Reaction.h"

using namespace std;

void Reaction::output() const {
 int i;

 for(i=0; i<reactantCount; i++) {
 if (i != 0) {
 cout << " + ";
 }
 reactants[i].output();
 }
 cout << " => ";
 if (productCount == 0) {
 cout << "*" << endl;
 } else {
 for(i=0; i<productCount; i++) {
 if (i != 0) {
 cout << " + ";
 }
 products[i].output();
 }
 }

 cout << " " << rate;
}

void Reaction::execute() {
 int i;
 for(i=0; i<reactantCount; i++) {
 *reactants[i].species -= reactants[i].coefficient;
 }
 for(i=0; i<productCount; i++) {
 *products[i].species += products[i].coefficient;
 }
}

double Reaction::getPropensity() const {
 int i,j;
 double propensity = rate;
 for(i=0; i<reactantCount; i++) {
 for(j=0; j<reactants[i].coefficient; j++) {
 propensity *= (double)(*reactants[i].species-j);
 }
 for(j=2; j<=reactants[i].coefficient; j++) {
 propensity /= (double)j;
 }
 }
 return propensity;
}

www.manaraa.com

 129

int Reaction::getDelta(int speciesIndex) const {
 int delta = 0;

 for(int i=0; i<reactantCount; i++) {
 if (reactants[i].speciesIndex == speciesIndex) {
 delta -= reactants[i].coefficient;
 }
 }
 for(int i=0; i<productCount; i++) {
 if (products[i].speciesIndex == speciesIndex) {
 delta += products[i].coefficient;
 }
 }

 return delta;
}

www.manaraa.com

 130

SpeciesUpdate.h

#ifndef SPECIESUPDATE_H
#define SPECIESUPDATE_H

class SpeciesUpdate {
 public:
 int coefficient;
 int speciesIndex;
 long *species;

 void output();
};

#endif

www.manaraa.com

 131

SpeciesUpdate.cc

#include <iostream>
#include "SpeciesUpdate.h"

using namespace std;

void SpeciesUpdate::output() {
 if (coefficient != 1) {
 cout << coefficient << " ";
 }
 cout << "s" << speciesIndex;
}

www.manaraa.com

 132

SumTree.h

class Node {
 public:
 Node *leftChild;
 Node *rightChild;
 Node *parent;
 double value;
 int id;
};

class SumTree {
public:
 SumTree(int size);
 void update(int id, double value);
 void print();
 double getSum();
 int selectReaction(double rand);

private:
 Node *root;
 Node **leafNodes;
 int leafNodeCount;
 int getNodeCount(Node *node);
 int getLeafNodeCount(Node *node);
 void assignNodeNumbers(Node *node);
 void updateHelper(Node *node);
 void add();
 Node *addHelper(Node *node);
 void printHelper(Node *node);
 Node *initNode();
 int selectReactionHelper(double rand, Node *node);
};

www.manaraa.com

 133

SumTree.cc

#include <iostream>
#include "SumTree.h"

using namespace std;

SumTree::SumTree(int size) {
 root = NULL;
 while(getLeafNodeCount(root) < size) {
 add();
 }
 leafNodes = new (Node *)[size];
 leafNodeCount = 0;
 assignNodeNumbers(root);
}

void SumTree::assignNodeNumbers(Node *node) {
 if (node == NULL) {
 return;
 } else if ((node->leftChild == NULL) && (node->rightChild == NULL)) {
 leafNodes[leafNodeCount] = node;
 node->id = leafNodeCount;
 leafNodeCount++;
 } else {
 assignNodeNumbers(node->leftChild);
 assignNodeNumbers(node->rightChild);
 }
}

int SumTree::getNodeCount(Node *node) {
 if (node == NULL) {
 return 0;
 } else {
 return 1 + getNodeCount(node->leftChild) + getNodeCount(node-
>rightChild);
 }
}

int SumTree::getLeafNodeCount(Node *node) {
 if (node == NULL) {
 return 0;
 } else if ((node->leftChild == NULL) && (node->rightChild == NULL)) {
 return 1;
 } else {
 return getLeafNodeCount(node->leftChild) + getLeafNodeCount(node-
>rightChild);
 }
}

Node *SumTree::initNode() {
 Node *node = new Node();
 node->leftChild = NULL;
 node->rightChild = NULL;

www.manaraa.com

 134

 node->parent = NULL;
 node->value = 0.0;
 node->id = -1;
 return node;
}

void SumTree::add() {
 if (root == NULL) {
 root = initNode();
 } else {
 Node *parent = addHelper(root);
 Node *n1 = initNode();
 Node *n2 = initNode();
 n1->parent = parent;
 n2->parent = parent;
 parent->leftChild = n1;
 parent->rightChild = n2;
 }
}

Node *SumTree::addHelper(Node *node) {
 if ((node->leftChild == NULL) || (node->rightChild == NULL)){
 return node;
 } else if (getNodeCount(node->leftChild) == getNodeCount(node-
>rightChild)) {
 return addHelper(node->leftChild);
 } else {
 return addHelper(node->rightChild);
 }
}

void SumTree::update(int id, double value) {
 leafNodes[id]->value = value;
 updateHelper(leafNodes[id]->parent);
}

void SumTree::updateHelper(Node *node) {
 if (node == NULL) {
 return;
 } else {
 node->value = node->leftChild->value + node->rightChild->value;
 updateHelper(node->parent);
 }
}

void SumTree::print() {
 printHelper(root);
 cout << endl;
}

void SumTree::printHelper(Node *node) {
 if (node == NULL) {
 cout << "-";
 } else {
 if ((node->leftChild == NULL) && (node->rightChild == NULL)) {

www.manaraa.com

 135

 cout << node->value;
 } else {
 cout << node->value << "(";
 printHelper(node->leftChild);
 cout << ",";
 printHelper(node->rightChild);
 cout << ")";
 }
 }
}

double SumTree::getSum() {
 return root->value;
}

int SumTree::selectReaction(double rand) {
 return selectReactionHelper(rand,root);
}

int SumTree::selectReactionHelper(double rand, Node *node) {
 if (node->id != -1) {
 return node->id;
 } else {
 if (rand < node->leftChild->value) {
 return selectReactionHelper(rand,node->leftChild);
 } else {
 return selectReactionHelper(rand - node->leftChild->value,node-
>rightChild);
 }
 }
}

www.manaraa.com

 136

Appendix B – Performance Analysis Source Code

The following pages include the source code used to generate models and

measure the execution times of the simulators.

www.manaraa.com

 137

ModelGen.java

import java.io.*;
import java.util.*;

class ModelGen {
 public static void generateModel(int speciesCount,
 int factor,
 String filename) throws IOException {
 PrintStream out = new PrintStream(new
FileOutputStream(filename));
 out.println(speciesCount);
 for(int i=0; i<speciesCount; i++) {
 if (i != 0) out.print(" ");
 out.print("100");
 }
 out.println();

 out.println(speciesCount*factor);
 for(int i=0; i<speciesCount; i++) {
 for(int j=0; j<factor; j++) {
 out.println("1 1 " + i + " 1 1 " + ((i+1)%speciesCount) + "
1.0");
 }
 }
 out.close();
 }

 public static void main(String args[]) throws IOException {
 for(int modelsize=12; modelsize<=12*50; modelsize+=12) {
 generateModel(modelsize,1,"" + modelsize + "_1.in");
 generateModel(modelsize/2,2,"" + modelsize + "_2.in");
 generateModel(modelsize/3,3,"" + modelsize + "_3.in");
 generateModel(modelsize/4,4,"" + modelsize + "_4.in");
 }
 }
}

www.manaraa.com

 138

Performance.java

import java.io.*;
import java.util.*;

class Performance {
 public static void print(String s) {
 System.out.println(s);
 System.err.println(s);
 }

 public static void main(String args[])

throws Exception {
 String executable = args[0];
 print("File\tSize\tFactor\tRxns\tTime");

 for(int j=1; j<=4; j++) {
 for(int i=12; i<=12*50; i+=12) {
 String filename = "models/" + i + "_" + j + ".in";
 long totalReactions = 5000000;
 long t1 = Calendar.getInstance().getTimeInMillis();
 Process p2 = Runtime.getRuntime().exec("./" + executable +
" -i " + filename + " -rxns " + totalReactions);
 p2.waitFor();
 long t2 = Calendar.getInstance().getTimeInMillis();
 print(filename + "\t" + i + "\t" + j + "\t" +
totalReactions + "\t" + ((t2-t1)/1000.0));
 }
 }
 }
}

www.manaraa.com

 139

Appendix C – Test Models

The following pages include SBML code for the real biological models used for

performance analysis.

www.manaraa.com

 140

Model: DIMER

8
1 1 0 0 0 0 0 0
13
1 1 0 2 1 0 1 2 0.01
1 1 2 0 6e-3
1 1 2 2 1 2 1 4 3e-2
1 1 4 0 4e-4
2 1 6 1 1 1 1 7 0.0016
1 1 7 2 1 1 1 6 0.2
1 1 1 2 1 1 1 3 0.002
1 1 7 2 1 7 1 3 0.1
1 1 3 0 6e-3
1 1 3 2 1 3 1 5 3e-2
1 1 5 0 4e-4
1 2 4 1 1 6 0.016
1 1 6 1 2 4 1
8
0 1 2 3 4 5 6 7

www.manaraa.com

 141

Model: ENG

32
0 130 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
49
1 1 3 2 1 3 1 4 .01
1 1 4 0 .012
1 1 4 2 1 4 1 1 .1
1 1 1 0 .0006
2 1 1 1 0 1 1 2 .000001
1 1 2 2 1 1 1 0 .01
1 1 6 4 1 6 1 7 1 8 1 29 .3
1 1 7 0 .012
1 1 8 0 .012
1 1 7 2 1 7 1 9 .1
1 1 8 2 1 8 1 10 .1
1 1 9 0 0.0006
1 1 10 0 0.0006
2 1 9 1 10 1 1 11 .01
1 1 11 2 1 9 1 10 .01
1 1 11 0 0.0006
1 1 0 0 0.0005
1 1 12 2 1 12 1 0 .2
2 1 12 1 0 1 1 13 0.0000005
1 1 13 2 1 12 1 0 .00004
1 1 31 2 1 15 1 31 .08
1 1 15 0 .012
1 1 15 2 1 15 1 16 .1
1 1 16 0 0.0006
2 1 16 1 18 1 1 27 .005
1 1 27 2 1 18 1 16 1
1 1 27 2 1 27 1 20 .08
1 1 20 0 .012
1 1 20 2 1 20 1 22 .1
1 1 22 0 0.0006
1 1 17 2 1 17 1 19 0.02
1 1 19 0 0.012
1 1 19 2 1 19 1 21 .1
1 1 21 0 0.0006
1 1 22 2 1 22 1 23 85
1 1 23 1 1 26 .1
1 1 26 1 1 23 .00001
2 1 23 1 21 1 1 24 .001
1 1 24 2 1 21 1 23 .3636
1 2 24 1 1 25 .2
1 1 25 1 2 24 .433
2 1 25 1 28 1 1 6 .1
1 1 6 2 1 25 1 28 4
1 1 29 0 0.012
1 1 29 2 1 29 1 30 .03
1 1 30 0 0.0006
2 1 30 1 23 1 1 30 5
2 1 2 1 14 1 1 31 0.06
1 1 31 2 1 2 1 14 10

www.manaraa.com

 142

11
0 1 2 11 16 21 22 23 26 28 30

www.manaraa.com

 143

Model: QS8

122
1 16000000 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
201
1 1 0 1 2 0 .0001194
1 1 2 2 1 2 1 3 5.55e-3
1 1 3 0 2.78e-5
1 2 3 1 1 4 .00003
1 1 4 1 2 3 .01
1 2 4 1 1 5 .0006
1 1 5 1 2 4 .01
2 1 6 1 5 1 1 7 .02
1 1 7 2 1 6 1 5 .01
1 1 7 2 1 7 1 8 0.06
1 1 8 0 .006
1 1 8 2 1 8 1 9 .03
1 1 9 0 0.0006
1 1 1 1 1 10 4.7e-7
1 1 10 1 1 1 0.8
2 1 9 1 10 1 1 11 0.001
1 1 11 2 1 9 1 10 0.3636
1 2 11 1 1 12 0.02
1 1 12 1 2 11 0.433
2 1 12 1 13 1 1 14 0.1
1 1 14 2 1 12 1 13 4
1 1 14 2 1 14 1 15 0.3
1 1 15 0 0.006
1 1 15 2 1 15 1 16 0.03
1 1 16 0 0.0006
2 1 16 1 0 3 1 0 1 16 1 1 0.006
1 1 17 2 1 17 1 18 5.55e-3
1 1 18 0 2.78e-5
1 2 18 1 1 19 .00003
1 1 19 1 2 18 .01
1 2 19 1 1 20 .0006
1 1 20 1 2 19 .01
2 1 21 1 20 1 1 22 .02
1 1 22 2 1 21 1 20 .01
1 1 22 2 1 22 1 23 0.06
1 1 23 0 .006
1 1 23 2 1 23 1 24 .03
1 1 24 0 0.0006
1 1 1 1 1 25 4.7e-7
1 1 25 1 1 1 0.8
2 1 24 1 25 1 1 26 0.001
1 1 26 2 1 24 1 25 0.3636
1 2 26 1 1 27 0.02
1 1 27 1 2 26 0.433
2 1 27 1 28 1 1 29 0.1
1 1 29 2 1 27 1 28 4

www.manaraa.com

 144

1 1 29 2 1 29 1 30 0.3
1 1 30 0 0.006
1 1 30 2 1 30 1 31 0.03
1 1 31 0 0.0006
2 1 31 1 0 3 1 0 1 31 1 1 0.006
1 1 32 2 1 32 1 33 5.55e-3
1 1 33 0 2.78e-5
1 2 33 1 1 34 .00003
1 1 34 1 2 33 .01
1 2 34 1 1 35 .0006
1 1 35 1 2 34 .01
2 1 36 1 35 1 1 37 .02
1 1 37 2 1 36 1 35 .01
1 1 37 2 1 37 1 38 0.06
1 1 38 0 .006
1 1 38 2 1 38 1 39 .03
1 1 39 0 0.0006
1 1 1 1 1 40 4.7e-7
1 1 40 1 1 1 0.8
2 1 39 1 40 1 1 41 0.001
1 1 41 2 1 39 1 40 0.3636
1 2 41 1 1 42 0.02
1 1 42 1 2 41 0.433
2 1 42 1 43 1 1 44 0.1
1 1 44 2 1 42 1 43 4
1 1 44 2 1 44 1 45 0.3
1 1 45 0 0.006
1 1 45 2 1 45 1 46 0.03
1 1 46 0 0.0006
2 1 46 1 0 3 1 0 1 46 1 1 0.006
1 1 47 2 1 47 1 48 5.55e-3
1 1 48 0 2.78e-5
1 2 48 1 1 49 .00003
1 1 49 1 2 48 .01
1 2 49 1 1 50 .0006
1 1 50 1 2 49 .01
2 1 51 1 50 1 1 52 .02
1 1 52 2 1 51 1 50 .01
1 1 52 2 1 52 1 53 0.06
1 1 53 0 .006
1 1 53 2 1 53 1 54 .03
1 1 54 0 0.0006
1 1 1 1 1 55 4.7e-7
1 1 55 1 1 1 0.8
2 1 54 1 55 1 1 56 0.001
1 1 56 2 1 54 1 55 0.3636
1 2 56 1 1 57 0.02
1 1 57 1 2 56 0.433
2 1 57 1 58 1 1 59 0.1
1 1 59 2 1 57 1 58 4
1 1 59 2 1 59 1 60 0.3
1 1 60 0 0.006
1 1 60 2 1 60 1 61 0.03
1 1 61 0 0.0006
2 1 61 1 0 3 1 0 1 61 1 1 0.006

www.manaraa.com

 145

1 1 62 2 1 62 1 63 5.55e-3
1 1 63 0 2.78e-5
1 2 63 1 1 64 .00003
1 1 64 1 2 63 .01
1 2 64 1 1 65 .0006
1 1 65 1 2 64 .01
2 1 66 1 65 1 1 67 .02
1 1 67 2 1 66 1 65 .01
1 1 67 2 1 67 1 68 0.06
1 1 68 0 .006
1 1 68 2 1 68 1 69 .03
1 1 69 0 0.0006
1 1 1 1 1 70 4.7e-7
1 1 70 1 1 1 0.8
2 1 69 1 70 1 1 71 0.001
1 1 71 2 1 69 1 70 0.3636
1 2 71 1 1 72 0.02
1 1 72 1 2 71 0.433
2 1 72 1 73 1 1 74 0.1
1 1 74 2 1 72 1 73 4
1 1 74 2 1 74 1 75 0.3
1 1 75 0 0.006
1 1 75 2 1 75 1 76 0.03
1 1 76 0 0.0006
2 1 76 1 0 3 1 0 1 76 1 1 0.006
1 1 77 2 1 77 1 78 5.55e-3
1 1 78 0 2.78e-5
1 2 78 1 1 79 .00003
1 1 79 1 2 78 .01
1 2 79 1 1 80 .0006
1 1 80 1 2 79 .01
2 1 81 1 80 1 1 82 .02
1 1 82 2 1 81 1 80 .01
1 1 82 2 1 82 1 83 0.06
1 1 83 0 .006
1 1 83 2 1 83 1 84 .03
1 1 84 0 0.0006
1 1 1 1 1 85 4.7e-7
1 1 85 1 1 1 0.8
2 1 84 1 85 1 1 86 0.001
1 1 86 2 1 84 1 85 0.3636
1 2 86 1 1 87 0.02
1 1 87 1 2 86 0.433
2 1 87 1 88 1 1 89 0.1
1 1 89 2 1 87 1 88 4
1 1 89 2 1 89 1 90 0.3
1 1 90 0 0.006
1 1 90 2 1 90 1 91 0.03
1 1 91 0 0.0006
2 1 91 1 0 3 1 0 1 91 1 1 0.006
1 1 92 2 1 92 1 93 5.55e-3
1 1 93 0 2.78e-5
1 2 93 1 1 94 .00003
1 1 94 1 2 93 .01
1 2 94 1 1 95 .0006

www.manaraa.com

 146

1 1 95 1 2 94 .01
2 1 96 1 95 1 1 97 .02
1 1 97 2 1 96 1 95 .01
1 1 97 2 1 97 1 98 0.06
1 1 98 0 .006
1 1 98 2 1 98 1 99 .03
1 1 99 0 0.0006
1 1 1 1 1 100 4.7e-7
1 1 100 1 1 1 0.8
2 1 99 1 100 1 1 101 0.001
1 1 101 2 1 99 1 100 0.3636
1 2 101 1 1 102 0.02
1 1 102 1 2 101 0.433
2 1 102 1 103 1 1 104 0.1
1 1 104 2 1 102 1 103 4
1 1 104 2 1 104 1 105 0.3
1 1 105 0 0.006
1 1 105 2 1 105 1 106 0.03
1 1 106 0 0.0006
2 1 106 1 0 3 1 0 1 106 1 1 0.006
1 1 107 2 1 107 1 108 5.55e-3
1 1 108 0 2.78e-5
1 2 108 1 1 109 .00003
1 1 109 1 2 108 .01
1 2 109 1 1 110 .0006
1 1 110 1 2 109 .01
2 1 111 1 110 1 1 112 .02
1 1 112 2 1 111 1 110 .01
1 1 112 2 1 112 1 113 0.06
1 1 113 0 .006
1 1 113 2 1 113 1 114 .03
1 1 114 0 0.0006
1 1 1 1 1 115 4.7e-7
1 1 115 1 1 1 0.8
2 1 114 1 115 1 1 116 0.001
1 1 116 2 1 114 1 115 0.3636
1 2 116 1 1 117 0.02
1 1 117 1 2 116 0.433
2 1 117 1 118 1 1 119 0.1
1 1 119 2 1 117 1 118 4
1 1 119 2 1 119 1 120 0.3
1 1 120 0 0.006
1 1 120 2 1 120 1 121 0.03
1 1 121 0 0.0006
2 1 121 1 0 3 1 0 1 121 1 1 0.006
17
1 8 15 23 30 38 45 53 60 68 75 83 90 98 105 113 120

www.manaraa.com

 147

Model: TB

17
10 0 0 10 0 0 10 20 0 0 0 0 0 0 1 0 1
23
1 1 16 2 1 0 1 16 10
2 1 0 1 3 2 1 3 1 1 16
2 1 0 1 4 2 1 4 1 1 32
2 1 0 1 5 2 1 5 1 1 16
2 1 1 1 3 2 1 3 1 2 0.6
2 1 1 1 4 2 1 4 1 2 0.6
2 1 1 1 5 2 1 5 1 2 0.78
1 1 2 0 4
1 1 3 1 1 4 100
1 1 4 1 1 3 1
1 1 4 1 1 5 0.5
1 1 5 1 1 4 10
2 1 6 1 7 1 1 8 1
1 2 1 1 1 13 10
1 1 13 1 2 1 10
2 1 13 1 14 1 1 15 5
1 1 15 2 1 13 1 14 10
2 1 15 1 9 2 1 8 1 15 10
1 1 8 1 1 9 10
1 1 9 1 1 10 4
1 1 10 1 1 11 6
1 1 11 3 1 12 1 6 1 7 1
1 1 12 0 100
17
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

www.manaraa.com

 148

Vita

 James Michael McCollum was born in Pittsburgh, PA on September 7, 1979. He

was raised in Pittsburgh, PA and attended school at Montessori Centre Academy and

Hampton Middle School. In 1997, he graduated from Hampton High School. From

there, he went to the University of Dayton in Ohio and received a B.E.E. in Electrical

Engineering and a B.S. in Computer Science in 2001. After graduation, he worked for a

Neolinear Inc., a analog circuit design automation company in Pittsburgh, PA. In 2004,

he received his M.S. in Electrical Engineering from the University of Tennessee,

Knoxville.

 Currently, James is pursuing his doctorate in Electrical Engineering from the

University of Tennessee, Knoxville.

	Accelerating Exact Stochastic Simulation
	Recommended Citation

	tmp.1382125373.pdf.pYpQx

